Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from parameterized import parameterized | |
from transformers import set_seed | |
from transformers.testing_utils import ( | |
is_torch_available, | |
require_auto_gptq, | |
require_torch, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
if is_torch_available(): | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
DynamicCache, | |
LlamaConfig, | |
LlamaForCausalLM, | |
SinkCache, | |
StaticCache, | |
) | |
class CacheTest(unittest.TestCase): | |
def test_dynamic_cache_retrocompatibility(self): | |
"""Tests that we can convert back and forth between the legacy cache format and DynamicCache""" | |
legacy_cache = () | |
new_cache = DynamicCache() | |
# Creates a new cache with 10 layers in both formats | |
for layer_idx in range(10): | |
new_key = torch.rand((2, 4, 8, 16)) | |
new_value = torch.rand((2, 4, 8, 16)) | |
new_cache.update(new_key, new_value, layer_idx) | |
legacy_cache += ((new_key, new_value),) | |
# Sanity check 1: they must have the same shapes | |
self.assertTrue(len(legacy_cache), len(new_cache)) | |
for layer_idx in range(10): | |
self.assertTrue(len(legacy_cache[layer_idx]), len(legacy_cache[layer_idx])) | |
for key_value_idx in range(2): | |
self.assertTrue( | |
legacy_cache[layer_idx][key_value_idx].shape == new_cache[layer_idx][key_value_idx].shape | |
) | |
# Sanity check 2: we can get the sequence length in multiple ways with DynamicCache, and they return the | |
# expected value | |
self.assertTrue(legacy_cache[0][0].shape[-2] == new_cache[0][0].shape[-2] == new_cache.get_seq_length() == 8) | |
# Sanity check 3: they must be equal, and both support indexing | |
for layer_idx in range(10): | |
for key_value_idx in range(2): | |
self.assertTrue( | |
torch.allclose(new_cache[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx]) | |
) | |
# Test 1: We can convert from legacy to new with no changes | |
from_legacy = DynamicCache.from_legacy_cache(legacy_cache) | |
for layer_idx in range(10): | |
for key_value_idx in range(2): | |
self.assertTrue( | |
torch.allclose(from_legacy[layer_idx][key_value_idx], legacy_cache[layer_idx][key_value_idx]) | |
) | |
# Test 2: We can convert from new to legacy with no changes | |
to_legacy = new_cache.to_legacy_cache() | |
for layer_idx in range(10): | |
for key_value_idx in range(2): | |
self.assertTrue( | |
torch.allclose(to_legacy[layer_idx][key_value_idx], new_cache[layer_idx][key_value_idx]) | |
) | |
def test_reorder_cache_retrocompatibility(self): | |
"""Tests that Cache.reorder_cache is retrocompatible with the legacy code path""" | |
legacy_reorder_fn = LlamaForCausalLM._reorder_cache # An example of a legacy `_reorder_cache` function | |
legacy_cache = () | |
new_cache = DynamicCache() | |
# Creates a new cache with 10 layers in both formats | |
for layer_idx in range(10): | |
new_key = torch.rand((4, 4, 8, 16)) | |
new_value = torch.rand((4, 4, 8, 16)) | |
new_cache.update(new_key, new_value, layer_idx) | |
legacy_cache += ((new_key, new_value),) | |
# Let's create some dummy beam indices. From the shape above, it is equivalent to the case where num_beams=4 | |
# and batch_size=1 | |
beam_idx = torch.randint(low=0, high=4, size=(4,)) | |
legacy_cache_reordered = legacy_reorder_fn(legacy_cache, beam_idx) | |
new_cache.reorder_cache(beam_idx) | |
# Let's check that the results are the same | |
for layer_idx in range(10): | |
for key_value_idx in range(2): | |
self.assertTrue( | |
torch.allclose( | |
new_cache[layer_idx][key_value_idx], legacy_cache_reordered[layer_idx][key_value_idx] | |
) | |
) | |
def test_static_cache_mha_mqa_gqa(self): | |
""" | |
Tests that static cache works with multi-head attention (MHA), grouped query attention (GQA), and multi-query | |
attention (MQA) | |
""" | |
def _random_kvs(config): | |
# shape for key and values: (batch_size, num_heads, seq_len, head_dim) | |
random_keys = torch.rand( | |
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads), | |
device=torch_device, | |
) | |
random_values = torch.rand( | |
(1, config.num_key_value_heads, 1, config.hidden_size // config.num_attention_heads), | |
device=torch_device, | |
) | |
return random_keys, random_values | |
mha_config = LlamaConfig(num_attention_heads=32) | |
mha_static_cache = StaticCache(config=mha_config, max_batch_size=1, max_cache_len=10, device=torch_device) | |
cached_keys, cached_values = mha_static_cache.update( | |
*_random_kvs(mha_config), 0, cache_kwargs={"cache_position": torch.arange(1)} | |
) | |
self.assertTrue(cached_keys.shape == (1, 32, 10, 128)) | |
self.assertTrue(cached_values.shape == (1, 32, 10, 128)) | |
gqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=4) | |
gqa_static_cache = StaticCache(config=gqa_config, max_batch_size=1, max_cache_len=10, device=torch_device) | |
cached_keys, cached_values = gqa_static_cache.update( | |
*_random_kvs(gqa_config), 0, cache_kwargs={"cache_position": torch.arange(1)} | |
) | |
self.assertTrue(cached_keys.shape == (1, 4, 10, 128)) | |
self.assertTrue(cached_values.shape == (1, 4, 10, 128)) | |
mqa_config = LlamaConfig(num_attention_heads=32, num_key_value_heads=1) | |
mqa_static_cache = StaticCache(config=mqa_config, max_batch_size=1, max_cache_len=10, device=torch_device) | |
cached_keys, cached_values = mqa_static_cache.update( | |
*_random_kvs(mqa_config), 0, cache_kwargs={"cache_position": torch.arange(1)} | |
) | |
self.assertTrue(cached_keys.shape == (1, 1, 10, 128)) | |
self.assertTrue(cached_values.shape == (1, 1, 10, 128)) | |
class CacheIntegrationTest(unittest.TestCase): | |
def test_dynamic_cache_hard(self): | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left") | |
model = AutoModelForCausalLM.from_pretrained( | |
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16 | |
) | |
inputs = tokenizer(["Here's everything I know about cats. Cats"], return_tensors="pt").to(model.device) | |
# DynamicCache and the legacy cache format should be equivalent | |
set_seed(0) | |
gen_out_legacy = model.generate(**inputs, do_sample=True, max_new_tokens=256) | |
set_seed(0) | |
gen_out = model.generate(**inputs, do_sample=True, max_new_tokens=256, past_key_values=DynamicCache()) | |
self.assertListEqual(gen_out_legacy.tolist(), gen_out.tolist()) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
expected_text = ( | |
"Here's everything I know about cats. Cats are mysterious creatures. They can't talk, and they don't like " | |
"to be held. They don't play fetch, and they don't like to be hugged. But they do like to be petted.\n" | |
"Cats are also very independent. They don't like to be told what to do, and they don't like to be told " | |
"what to eat. They are also very territorial. They don't like to share their food or their toys.\nCats " | |
"are also very curious. They like to explore, and they like to play. They are also very fast. They can " | |
"run very fast, and they can jump very high.\nCats are also very smart. They can learn tricks, and they " | |
"can solve problems. They are also very playful. They like to play with toys, and they like to play with " | |
"other cats.\nCats are also very affectionate. They like to be petted, and they like to be held. They " | |
"also like to be scratched.\nCats are also very clean. They like to groom themselves, and they like to " | |
"clean their litter box.\nCats are also very independent. They don't" | |
) | |
self.assertEqual(decoded[0], expected_text) | |
def test_dynamic_cache_batched(self): | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left") | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModelForCausalLM.from_pretrained( | |
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16 | |
) | |
inputs = tokenizer(["A sequence: 1, 2, 3, 4, 5", "A sequence: A, B, C"], padding=True, return_tensors="pt").to( | |
model.device | |
) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10, past_key_values=DynamicCache()) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
expected_text = ["A sequence: 1, 2, 3, 4, 5, 6, 7, 8,", "A sequence: A, B, C, D, E, F, G, H"] | |
self.assertListEqual(decoded, expected_text) | |
def test_dynamic_cache_beam_search(self): | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", padding_side="left") | |
model = AutoModelForCausalLM.from_pretrained( | |
"meta-llama/Llama-2-7b-hf", device_map="auto", torch_dtype=torch.float16 | |
) | |
inputs = tokenizer(["The best color is"], return_tensors="pt").to(model.device) | |
gen_out = model.generate( | |
**inputs, | |
do_sample=False, | |
max_new_tokens=20, | |
num_beams=2, | |
num_return_sequences=2, | |
) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
expected_text = [ | |
"The best color is the one that makes you feel good.\nThe best color is the one that makes you feel good", | |
"The best color is the one that suits you.\nThe best color is the one that suits you. The", | |
] | |
self.assertListEqual(decoded, expected_text) | |
def test_sink_cache_hard(self): | |
tokenizer = AutoTokenizer.from_pretrained("TheBloke/LLaMa-7B-GPTQ") | |
model = AutoModelForCausalLM.from_pretrained("TheBloke/LLaMa-7B-GPTQ", device_map="auto") | |
inputs = tokenizer(["Vaswani et al. (2017) introduced the Transformers"], return_tensors="pt").to(model.device) | |
# Set up the SinkCache. Using a small window length to contain computational complexity. If this example is run | |
# without a SinkCache, the last few tokens are gibberish (ends in "of the of the of a of a of") | |
cache = SinkCache(window_length=508, num_sink_tokens=4) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=3000, past_key_values=cache) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
self.assertTrue(decoded[0].endswith("to perform a variety of tasks. The Transformer is a neural network")) | |
def test_sink_cache_iterative_prompts(self): | |
"""Tests that SinkCache supports more than one new token at once, when shifting the cache""" | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
model = AutoModelForCausalLM.from_pretrained( | |
"HuggingFaceH4/zephyr-7b-beta", device_map="auto", torch_dtype=torch.float16 | |
) | |
prompt = ( | |
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences " | |
"and must-see attractions." | |
) | |
# Prepare generation settings | |
cache = SinkCache(window_length=256, num_sink_tokens=4) | |
input_ids = torch.tensor([], device=model.device, dtype=torch.int) | |
for _ in range(3): | |
# Tokenize the prompt with the correct chat template | |
chat = [{"role": "user", "content": prompt}] | |
tokenized_chat = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to( | |
model.device | |
) | |
input_ids = torch.cat((input_ids, tokenized_chat), dim=1) | |
# Perform the generation | |
gen_out = model.generate( | |
input_ids, do_sample=False, max_new_tokens=100, past_key_values=cache, use_cache=True | |
) | |
input_ids = gen_out | |
# We went well beyond the cache length | |
self.assertTrue(input_ids.shape[1] > cache.get_max_length() * 1.5) | |
# And it still produces a coherent english | |
decoded = tokenizer.batch_decode(input_ids, skip_special_tokens=True) | |
last_output = ( | |
"<|assistant|>\nAs the sun began to set over the Pacific Ocean, I found myself standing on the shores of " | |
"Waikiki Beach, my heart filled with awe and wonder. I had just returned from a two-week journey to the " | |
"beautiful island of Hawaii, and it had been an unforgettable experience filled with cultural experiences " | |
"and must-see attractions that left me breathless.\n\nOne of the most memorable experiences of my trip " | |
"was visiting the historic district of Honolulu. Here," | |
) | |
self.assertTrue(decoded[0].endswith(last_output)) | |
def test_static_cache_greedy_decoding_pad_left(self, attn_implementation): | |
EXPECTED_GENERATION = [ | |
"The best color is the one that complements the skin tone of the", | |
"We should not undermind the issues at hand.\nWe should not undermind the issues", | |
] | |
tokenizer = AutoTokenizer.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", | |
torch_dtype=torch.bfloat16, | |
attn_implementation=attn_implementation, | |
).to(torch_device) | |
inputs = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt" | |
).to(model.device) | |
set_seed(0) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, dynamic"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
set_seed(0) | |
model.generation_config.cache_implementation = "static" | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, static, eager"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
set_seed(0) | |
model.forward = torch.compile(model.forward) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, static, compiled"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
def test_static_cache_greedy_decoding_pad_right(self, attn_implementation): | |
EXPECTED_GENERATION = [ | |
"The best color isЋ the one that complements the skin tone of", | |
"We should not undermind the issues at hand.\nWe should not undermind the issues", | |
] | |
tokenizer = AutoTokenizer.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", padding_side="right", pad_token="<s>" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", | |
torch_dtype=torch.bfloat16, | |
attn_implementation=attn_implementation, | |
).to(torch_device) | |
inputs = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt" | |
).to(model.device) | |
set_seed(0) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, dynamic"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
set_seed(0) | |
model.generation_config.cache_implementation = "static" | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, static, eager"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
set_seed(0) | |
model._forward = model.forward | |
compiled_forward = torch.compile(model.forward) | |
def compiled(func, input_ids, **kwargs): | |
return func(input_ids, **kwargs) | |
def call(input_ids, **kwargs): | |
if input_ids.shape[-1] == 1: | |
return compiled(compiled_forward, input_ids, **kwargs) | |
return model._forward(input_ids, **kwargs) | |
model.forward = call | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
with self.subTest(f"{attn_implementation}, static, compiled"): | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
def test_dynamic_cache_extra_left_padding(self): | |
"""Tests that adding extra left-padding does not affect the generation with the dynamic cache""" | |
EXPECTED_GENERATION = [ | |
"The best color is the one that complements the skin tone of the", | |
"We should not undermind the issues at hand.\nWe should not undermind the issues", | |
] | |
tokenizer = AutoTokenizer.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", | |
torch_dtype=torch.bfloat16, | |
).to(torch_device) | |
inputs = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt" | |
).to(model.device) | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
# Now with extra left-padding | |
inputs_expanded = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], | |
padding=True, | |
return_tensors="pt", | |
pad_to_multiple_of=32, | |
).to(model.device) | |
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1]) | |
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
def test_static_cache_extra_left_padding(self): | |
"""Tests that adding extra left-padding does not affect the generation with the static cache""" | |
EXPECTED_GENERATION = [ | |
"The best color is the one that complements the skin tone of the", | |
"We should not undermind the issues at hand.\nWe should not undermind the issues", | |
] | |
tokenizer = AutoTokenizer.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", padding_side="left", pad_token="<s>" | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"NousResearch/Llama-2-7b-chat-hf", | |
torch_dtype=torch.bfloat16, | |
).to(torch_device) | |
inputs = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], padding=True, return_tensors="pt" | |
).to(model.device) | |
model.generation_config.cache_implementation = "static" | |
gen_out = model.generate(**inputs, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
# Now with extra left-padding | |
inputs_expanded = tokenizer( | |
["The best color is", "We should not undermind the issues at hand"], | |
padding=True, | |
return_tensors="pt", | |
pad_to_multiple_of=32, | |
).to(model.device) | |
self.assertTrue(inputs.input_ids.shape[1] < inputs_expanded.input_ids.shape[1]) | |
gen_out = model.generate(**inputs_expanded, do_sample=False, max_new_tokens=10) | |
decoded = tokenizer.batch_decode(gen_out, skip_special_tokens=True) | |
self.assertListEqual(decoded, EXPECTED_GENERATION) | |
def test_static_cache_beam_search(self): | |
pass | |