Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
import tempfile | |
from transformers.testing_utils import require_torch, torch_device | |
from transformers.utils.backbone_utils import BackboneType | |
class BackboneTesterMixin: | |
all_model_classes = () | |
has_attentions = True | |
def test_config(self): | |
config_class = self.config_class | |
# test default config | |
config = config_class() | |
self.assertIsNotNone(config) | |
num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers | |
expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)] | |
self.assertEqual(config.stage_names, expected_stage_names) | |
self.assertTrue(set(config.out_features).issubset(set(config.stage_names))) | |
# Test out_features and out_indices are correctly set | |
# out_features and out_indices both None | |
config = config_class(out_features=None, out_indices=None) | |
self.assertEqual(config.out_features, [config.stage_names[-1]]) | |
self.assertEqual(config.out_indices, [len(config.stage_names) - 1]) | |
# out_features and out_indices both set | |
config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1]) | |
self.assertEqual(config.out_features, ["stem", "stage1"]) | |
self.assertEqual(config.out_indices, [0, 1]) | |
# Only out_features set | |
config = config_class(out_features=["stage1", "stage3"]) | |
self.assertEqual(config.out_features, ["stage1", "stage3"]) | |
self.assertEqual(config.out_indices, [1, 3]) | |
# Only out_indices set | |
config = config_class(out_indices=[0, 2]) | |
self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]]) | |
self.assertEqual(config.out_indices, [0, 2]) | |
# Error raised when out_indices do not correspond to out_features | |
with self.assertRaises(ValueError): | |
config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2]) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.forward) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
expected_arg_names = ["pixel_values"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_config_save_pretrained(self): | |
config_class = self.config_class | |
config_first = config_class(out_indices=[0, 1, 2, 3]) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
config_first.save_pretrained(tmpdirname) | |
config_second = self.config_class.from_pretrained(tmpdirname) | |
self.assertEqual(config_second.to_dict(), config_first.to_dict()) | |
def test_channels(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertEqual(len(model.channels), len(config.out_features)) | |
num_features = model.num_features | |
out_indices = [config.stage_names.index(feat) for feat in config.out_features] | |
out_channels = [num_features[idx] for idx in out_indices] | |
self.assertListEqual(model.channels, out_channels) | |
new_config = copy.deepcopy(config) | |
new_config.out_features = None | |
model = model_class(new_config) | |
self.assertEqual(len(model.channels), 1) | |
self.assertListEqual(model.channels, [num_features[-1]]) | |
new_config = copy.deepcopy(config) | |
new_config.out_indices = None | |
model = model_class(new_config) | |
self.assertEqual(len(model.channels), 1) | |
self.assertListEqual(model.channels, [num_features[-1]]) | |
def test_create_from_modified_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
model.to(torch_device) | |
model.eval() | |
result = model(**inputs_dict) | |
self.assertEqual(len(result.feature_maps), len(config.out_features)) | |
self.assertEqual(len(model.channels), len(config.out_features)) | |
self.assertEqual(len(result.feature_maps), len(config.out_indices)) | |
self.assertEqual(len(model.channels), len(config.out_indices)) | |
# Check output of last stage is taken if out_features=None, out_indices=None | |
modified_config = copy.deepcopy(config) | |
modified_config.out_features = None | |
model = model_class(modified_config) | |
model.to(torch_device) | |
model.eval() | |
result = model(**inputs_dict) | |
self.assertEqual(len(result.feature_maps), 1) | |
self.assertEqual(len(model.channels), 1) | |
modified_config = copy.deepcopy(config) | |
modified_config.out_indices = None | |
model = model_class(modified_config) | |
model.to(torch_device) | |
model.eval() | |
result = model(**inputs_dict) | |
self.assertEqual(len(result.feature_maps), 1) | |
self.assertEqual(len(model.channels), 1) | |
# Check backbone can be initialized with fresh weights | |
modified_config = copy.deepcopy(config) | |
modified_config.use_pretrained_backbone = False | |
model = model_class(modified_config) | |
model.to(torch_device) | |
model.eval() | |
result = model(**inputs_dict) | |
def test_backbone_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for backbone_class in self.all_model_classes: | |
backbone = backbone_class(config) | |
self.assertTrue(hasattr(backbone, "backbone_type")) | |
self.assertTrue(hasattr(backbone, "stage_names")) | |
self.assertTrue(hasattr(backbone, "num_features")) | |
self.assertTrue(hasattr(backbone, "out_indices")) | |
self.assertTrue(hasattr(backbone, "out_features")) | |
self.assertTrue(hasattr(backbone, "out_feature_channels")) | |
self.assertTrue(hasattr(backbone, "channels")) | |
self.assertIsInstance(backbone.backbone_type, BackboneType) | |
# Verify num_features has been initialized in the backbone init | |
self.assertIsNotNone(backbone.num_features) | |
self.assertTrue(len(backbone.channels) == len(backbone.out_indices)) | |
self.assertTrue(len(backbone.stage_names) == len(backbone.num_features)) | |
self.assertTrue(len(backbone.channels) <= len(backbone.num_features)) | |
self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names)) | |
def test_backbone_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
batch_size = inputs_dict["pixel_values"].shape[0] | |
for backbone_class in self.all_model_classes: | |
backbone = backbone_class(config) | |
backbone.to(torch_device) | |
backbone.eval() | |
outputs = backbone(**inputs_dict) | |
# Test default outputs and verify feature maps | |
self.assertIsInstance(outputs.feature_maps, tuple) | |
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) | |
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): | |
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) | |
self.assertIsNone(outputs.hidden_states) | |
self.assertIsNone(outputs.attentions) | |
# Test output_hidden_states=True | |
outputs = backbone(**inputs_dict, output_hidden_states=True) | |
self.assertIsNotNone(outputs.hidden_states) | |
self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names)) | |
for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels): | |
self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels)) | |
# Test output_attentions=True | |
if self.has_attentions: | |
outputs = backbone(**inputs_dict, output_attentions=True) | |
self.assertIsNotNone(outputs.attentions) | |
def test_backbone_stage_selection(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
batch_size = inputs_dict["pixel_values"].shape[0] | |
for backbone_class in self.all_model_classes: | |
config.out_indices = [-2, -1] | |
backbone = backbone_class(config) | |
backbone.to(torch_device) | |
backbone.eval() | |
outputs = backbone(**inputs_dict) | |
# Test number of feature maps returned | |
self.assertIsInstance(outputs.feature_maps, tuple) | |
self.assertTrue(len(outputs.feature_maps) == 2) | |
# Order of channels returned is same as order of channels iterating over stage names | |
channels_from_stage_names = [ | |
backbone.out_feature_channels[name] for name in backbone.stage_names if name in backbone.out_features | |
] | |
self.assertEqual(backbone.channels, channels_from_stage_names) | |
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels): | |
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels)) | |