Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
import pytest | |
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig | |
from transformers.testing_utils import ( | |
is_torch_available, | |
require_accelerate, | |
require_auto_gptq, | |
require_optimum, | |
require_torch_gpu, | |
require_torch_multi_gpu, | |
slow, | |
) | |
if is_torch_available(): | |
import torch | |
class GPTQConfigTest(unittest.TestCase): | |
def test_bits(self): | |
with self.assertRaises(ValueError): | |
GPTQConfig(bits="") | |
GPTQConfig(bits=1) | |
GPTQConfig(bits=2) | |
GPTQConfig(bits=4) | |
def test_dataset(self): | |
with self.assertRaises(ValueError): | |
GPTQConfig(bits=2, dataset="auto_gpt") | |
GPTQConfig(bits=2, dataset="c4") | |
GPTQConfig(bits=2, dataset="ptb-new") | |
def test_damp_percent(self): | |
with self.assertRaises(ValueError): | |
GPTQConfig(bits=2, damp_percent=10) | |
GPTQConfig(bits=2, damp_percent=-1) | |
GPTQConfig(bits=2, damp_percent="0") | |
GPTQConfig(bits=2, damp_percent=0.01) | |
def test_to_dict(self): | |
quantization_config = GPTQConfig(bits=2) | |
quantization_config.to_dict() | |
def test_from_dict(self): | |
dict = {"bits": 2} | |
quantization_config = GPTQConfig.from_dict(dict) | |
self.assertEqual(dict["bits"], quantization_config.bits) | |
def test_optimum_config(self): | |
from optimum.gptq import GPTQQuantizer | |
config = GPTQConfig(bits=2) | |
optimum_config = GPTQQuantizer.from_dict(config.to_dict_optimum()) | |
self.assertEqual(optimum_config.bits, config.bits) | |
new_config = GPTQConfig.from_dict_optimum(optimum_config.to_dict()) | |
self.assertEqual(optimum_config.bits, new_config.bits) | |
class GPTQTest(unittest.TestCase): | |
model_name = "bigscience/bloom-560m" | |
input_text = "Hello my name is" | |
EXPECTED_OUTPUTS = set() | |
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I") | |
EXPECTED_OUTPUTS.add("Hello my name is John, I am a professional photographer and I") | |
EXPECTED_OUTPUTS.add("Hello my name is John, I am a student in the University of") | |
EXPECTED_OUTPUTS.add("Hello my name is John and I am a very good looking man.") | |
EXPECTED_OUTPUTS.add("Hello my name is Alyson, I am a student in the") | |
EXPECTED_OUTPUTS.add("Hello my name is Alyson and I am a very sweet,") | |
# this seems a little small considering that we are doing 4bit quant but we have a small model and ww don't quantize the embeddings | |
EXPECTED_RELATIVE_DIFFERENCE = 1.664253062 | |
bits = 4 | |
group_size = 128 | |
desc_act = False | |
use_exllama = False | |
dataset = [ | |
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm." | |
] | |
device_map = None | |
# called only once for all test in this class | |
def setUpClass(cls): | |
""" | |
Setup quantized model | |
""" | |
cls.model_fp16 = AutoModelForCausalLM.from_pretrained( | |
cls.model_name, torch_dtype=torch.float16, device_map=cls.device_map | |
) | |
cls.mem_fp16 = cls.model_fp16.get_memory_footprint() | |
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) | |
quantization_config = GPTQConfig( | |
bits=cls.bits, | |
dataset=cls.dataset, | |
tokenizer=cls.tokenizer, | |
group_size=cls.group_size, | |
desc_act=cls.desc_act, | |
use_exllama=cls.use_exllama, | |
) | |
cls.quantized_model = AutoModelForCausalLM.from_pretrained( | |
cls.model_name, | |
torch_dtype=torch.float16, | |
device_map=cls.device_map, | |
quantization_config=quantization_config, | |
) | |
def test_memory_footprint(self): | |
r""" | |
A simple test to check if the model conversion has been done correctly by checking on the | |
memory footprint of the converted model | |
""" | |
mem_quantized = self.quantized_model.get_memory_footprint() | |
self.assertAlmostEqual(self.mem_fp16 / mem_quantized, self.EXPECTED_RELATIVE_DIFFERENCE) | |
def test_device_and_dtype_assignment(self): | |
r""" | |
Test whether trying to cast (or assigning a device to) a model after quantization will throw an error. | |
Checks also if other models are casted correctly. | |
""" | |
# This should work | |
if self.device_map is None: | |
_ = self.quantized_model.to(0) | |
with self.assertRaises(ValueError): | |
# Tries with a `dtype`` | |
self.quantized_model.to(torch.float16) | |
def test_original_dtype(self): | |
r""" | |
A simple test to check if the model succesfully stores the original dtype | |
""" | |
self.assertTrue(hasattr(self.quantized_model.config, "_pre_quantization_dtype")) | |
self.assertFalse(hasattr(self.model_fp16.config, "_pre_quantization_dtype")) | |
self.assertTrue(self.quantized_model.config._pre_quantization_dtype == torch.float16) | |
def test_quantized_layers_class(self): | |
""" | |
Simple test to check if the model conversion has been done correctly by checking on | |
the class type of the linear layers of the converted models | |
""" | |
from auto_gptq.utils.import_utils import dynamically_import_QuantLinear | |
QuantLinear = dynamically_import_QuantLinear( | |
use_triton=False, | |
desc_act=self.desc_act, | |
group_size=self.group_size, | |
bits=self.bits, | |
disable_exllama=not self.use_exllama, | |
disable_exllamav2=True, | |
) | |
self.assertTrue(self.quantized_model.transformer.h[0].mlp.dense_4h_to_h.__class__ == QuantLinear) | |
def check_inference_correctness(self, model): | |
r""" | |
Test the generation quality of the quantized model and see that we are matching the expected output. | |
Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
""" | |
# Check that inference pass works on the model | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
# Check the exactness of the results | |
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
# Get the generation | |
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
def check_quantized_layers_type(self, model, value): | |
self.assertTrue(model.transformer.h[0].mlp.dense_4h_to_h.QUANT_TYPE == value) | |
def test_generate_quality(self): | |
""" | |
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens | |
""" | |
if self.device_map is None: | |
self.check_inference_correctness(self.quantized_model.to(0)) | |
else: | |
self.check_inference_correctness(self.quantized_model) | |
def test_serialization(self): | |
""" | |
Test the serialization of the model and the loading of the quantized weights works | |
""" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.quantized_model.save_pretrained(tmpdirname) | |
if not self.use_exllama: | |
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( | |
tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4) | |
).to(0) | |
self.check_quantized_layers_type(quantized_model_from_saved, "cuda-old") | |
else: | |
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel | |
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map={"": 0}) | |
self.check_quantized_layers_type(quantized_model_from_saved, "exllama") | |
self.check_inference_correctness(quantized_model_from_saved) | |
def test_serialization_big_model_inference(self): | |
""" | |
Test the serialization of the model and the loading of the quantized weights with big model inference | |
""" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.quantized_model.save_pretrained(tmpdirname) | |
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname, device_map="auto") | |
self.check_inference_correctness(quantized_model_from_saved) | |
def test_change_loading_attributes(self): | |
""" | |
Test the serialization of the model and the loading of the quantized weights works with another config file | |
""" | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
self.quantized_model.save_pretrained(tmpdirname) | |
if not self.use_exllama: | |
self.check_quantized_layers_type(self.quantized_model, "cuda-old") | |
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel | |
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained( | |
tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map={"": 0} | |
) | |
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits) | |
self.check_quantized_layers_type(quantized_model_from_saved, "exllama") | |
self.check_inference_correctness(quantized_model_from_saved) | |
class GPTQTestDeviceMap(GPTQTest): | |
device_map = "auto" | |
class GPTQTestDeviceMapExllama(GPTQTest): | |
device_map = "auto" | |
use_exllama = True | |
class GPTQTestActOrderExllama(unittest.TestCase): | |
""" | |
Test GPTQ model with exllama kernel and desc_act=True (also known as act-order). | |
More information on those arguments here: | |
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig | |
""" | |
EXPECTED_OUTPUTS = set() | |
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.") | |
# 4bit + act_order + 128g | |
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ" | |
input_text = "Hello, how are you ?" | |
def setUpClass(cls): | |
""" | |
Setup quantized model | |
""" | |
cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028) | |
cls.quantized_model = AutoModelForCausalLM.from_pretrained( | |
cls.model_name, | |
torch_dtype=torch.float16, | |
device_map={"": 0}, | |
quantization_config=cls.quantization_config, | |
) | |
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) | |
def check_inference_correctness(self, model): | |
""" | |
Test the generation quality of the quantized model and see that we are matching the expected output. | |
Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
""" | |
# Check that inference pass works on the model | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
# Check the exactness of the results | |
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
# Get the generation | |
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
def test_quantized_layers_type(self): | |
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllama") | |
def test_generate_quality(self): | |
""" | |
Simple test to check the quality of the model by comparing the generated tokens with the expected tokens | |
""" | |
self.check_inference_correctness(self.quantized_model) | |
def test_max_input_length(self): | |
""" | |
Test if the max_input_length works. It modifies the maximum input length that of the model that runs with exllama backend. | |
""" | |
prompt = "I am in Paris and" * 1000 | |
inp = self.tokenizer(prompt, return_tensors="pt").to(0) | |
self.assertTrue(inp["input_ids"].shape[1] > 4028) | |
with self.assertRaises(RuntimeError) as cm: | |
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) | |
self.assertTrue("temp_state buffer is too small" in str(cm.exception)) | |
prompt = "I am in Paris and" | |
inp = self.tokenizer(prompt, return_tensors="pt").to(0) | |
self.assertTrue(inp["input_ids"].shape[1] < 4028) | |
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3) | |
class GPTQTestExllamaV2(unittest.TestCase): | |
""" | |
Test GPTQ model with exllamav2 kernel and desc_act=True (also known as act-order). | |
More information on those arguments here: | |
https://huggingface.co/docs/transformers/main_classes/quantization#transformers.GPTQConfig | |
""" | |
EXPECTED_OUTPUTS = set() | |
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.") | |
# 4bit + act_order + 128g | |
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ" | |
input_text = "Hello, how are you ?" | |
def setUpClass(cls): | |
""" | |
Setup quantized model | |
""" | |
cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2}) | |
cls.quantized_model = AutoModelForCausalLM.from_pretrained( | |
cls.model_name, | |
torch_dtype=torch.float16, | |
device_map={"": 0}, | |
quantization_config=cls.quantization_config, | |
) | |
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name, use_fast=True) | |
def test_quantized_layers_type(self): | |
self.assertTrue(self.quantized_model.model.layers[0].self_attn.k_proj.QUANT_TYPE == "exllamav2") | |
def check_inference_correctness(self, model): | |
""" | |
Test the generation quality of the quantized model and see that we are matching the expected output. | |
Given that we are operating on small numbers + the testing model is relatively small, we might not get | |
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. | |
""" | |
# Check that inference pass works on the model | |
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") | |
# Check the exactness of the results | |
output_sequences = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) | |
# Get the generation | |
self.assertIn(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUTS) | |
def test_generate_quality(self): | |
""" | |
Simple test to check the quality of the model by comapring the the generated tokens with the expected tokens | |
""" | |
self.check_inference_correctness(self.quantized_model) | |
# fail when run all together | |
class GPTQTestDeviceMapCPUOffload(GPTQTest): | |
device_map = { | |
"transformer.word_embeddings": 0, | |
"transformer.word_embeddings_layernorm": 0, | |
"lm_head": 0, | |
"transformer.h.0": 0, | |
"transformer.h.1": 0, | |
"transformer.h.2": 0, | |
"transformer.h.3": 0, | |
"transformer.h.4": 0, | |
"transformer.h.5": 0, | |
"transformer.h.6": 0, | |
"transformer.h.7": 0, | |
"transformer.h.8": 0, | |
"transformer.h.9": 0, | |
"transformer.h.10": 1, | |
"transformer.h.11": 1, | |
"transformer.h.12": 1, | |
"transformer.h.13": 1, | |
"transformer.h.14": 1, | |
"transformer.h.15": 1, | |
"transformer.h.16": 1, | |
"transformer.h.17": 0, | |
"transformer.h.18": "cpu", | |
"transformer.h.19": "cpu", | |
"transformer.h.20": "cpu", | |
"transformer.h.21": "cpu", | |
"transformer.h.22": "cpu", | |
"transformer.h.23": 1, | |
"transformer.ln_f": 0, | |
} | |