Aston-xMAD's picture
init commit
b37c16f verified
raw
history blame
12.9 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import subprocess
from os.path import dirname
from parameterized import parameterized
from tests.trainer.test_trainer import TrainerIntegrationCommon # noqa
from transformers import is_torch_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_tests_dir,
require_deepspeed,
require_torch_gpu,
slow,
)
from transformers.trainer_utils import set_seed
if is_torch_available():
from tests.trainer.test_trainer import ( # noqa
RegressionModelConfig,
RegressionPreTrainedModel,
get_regression_trainer,
)
set_seed(42)
FIXTURE_DIRECTORY = get_tests_dir("fixtures")
ROOT_DIRECTORY = os.path.join(dirname(get_tests_dir()))
DS_TESTS_DIRECTORY = dirname(os.path.abspath(__file__))
# default torch.distributed port
DEFAULT_MASTER_PORT = "10999"
T5_SMALL = "google-t5/t5-small"
# *** Working Models ***
ALBERT_TINY = "hf-internal-testing/tiny-albert"
BART_TINY = "sshleifer/bart-tiny-random"
BERT_TINY = "hf-internal-testing/tiny-bert"
BIGBIRD_PEGASUS_TINY = "hf-internal-testing/tiny-random-bigbird_pegasus"
BIG_BIRD_TINY = "hf-internal-testing/tiny-random-big_bird"
BLENDERBOT_TINY = "hf-internal-testing/tiny-random-blenderbot"
BLOOM_TINY = "bigscience/bigscience-small-testing"
DEBERTA_TINY = "hf-internal-testing/tiny-random-deberta"
DEBERTA_V2_TINY = "hf-internal-testing/tiny-random-deberta-v2"
DISTILBERT_TINY = "sshleifer/tiny-distilbert-base-cased"
ELECTRA_TINY = "hf-internal-testing/tiny-electra"
FLAUBERT_TINY = "hf-internal-testing/tiny-random-flaubert"
FSMT_TINY = "stas/tiny-wmt19-en-de"
FUNNEL_TINY = "hf-internal-testing/tiny-random-funnel"
GPT2_TINY = "sshleifer/tiny-gpt2"
GPTJ_TINY = "hf-internal-testing/tiny-random-gptj"
GPT_NEO_TINY = "hf-internal-testing/tiny-random-gpt_neo"
LAYOUTLM_TINY = "hf-internal-testing/tiny-layoutlm"
LED_TINY = "hf-internal-testing/tiny-random-led"
LONGFORMER_TINY = "hf-internal-testing/tiny-random-longformer"
M2M_100_TINY = "stas/tiny-m2m_100" # hf tiny model is unsuitable
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
MBART_TINY = "sshleifer/tiny-mbart"
MOBILEBERT_TINY = "hf-internal-testing/tiny-random-mobilebert"
MPNET_TINY = "hf-internal-testing/tiny-random-mpnet"
PEGASUS_TINY = "stas/pegasus-cnn_dailymail-tiny-random"
PROPHETNET_TINY = "hf-internal-testing/tiny-random-prophetnet"
ROBERTA_TINY = "sshleifer/tiny-distilroberta-base"
SQUEEZEBERT_TINY = "hf-internal-testing/tiny-random-squeezebert"
T5_TINY = "patrickvonplaten/t5-tiny-random"
T5_V1_TINY = "hf-internal-testing/tiny-random-t5-v1.1"
VIT_TINY = "hf-internal-testing/tiny-random-vit"
XLM_ROBERTA_TINY = "hf-internal-testing/tiny-xlm-roberta"
XLNET_TINY = "sshleifer/tiny-xlnet-base-cased"
# *** To Fix ***
# *** tiny model issues ***
# missing model files:
MT5_TINY = "hf-internal-testing/tiny-random-mt5"
CAMEMBERT_TINY = "hf-internal-testing/tiny-random-camembert"
OPENAI_GPT_TINY = "hf-internal-testing/tiny-random-openai-gpt"
# missing tokenizer files
CONVBERT_TINY = "hf-internal-testing/tiny-random-convbert"
LAYOUTLMV2_TINY = "hf-internal-testing/tiny-random-layoutlmv2"
HUBERT_TINY = "hf-internal-testing/tiny-random-hubert"
# issues with tokenizer
CTRL_TINY = "hf-internal-testing/tiny-random-ctrl"
TRANSFO_XL_TINY = "hf-internal-testing/tiny-random-transfo-xl" # same as Salesforce/ctrl
# other issues with tiny models
IBERT_TINY = "hf-internal-testing/tiny-random-ibert" # multiple issues with either mlm/qa/clas
REFORMER_TINY = "hf-internal-testing/tiny-random-reformer" # multiple issues with either mlm/qa/clas
# *** Lacking official examples to test with ***
# or not working with examples
DPR_TINY = "hf-internal-testing/tiny-random-dpr"
# - "dpr" examples/research_projects/rag-end2end-retriever/
RAG_TINY = "hf-internal-testing/tiny-random-rag"
# - "rag" research_projects
LUKE_TINY = ""
# - "luke" Entities classes - no plan to make such example
LXMERT_TINY = "hf-internal-testing/tiny-random-lxmert"
# - "lxmert" doesn't work with run_qa.py
CLIP_TINY = "hf-internal-testing/tiny-random-clip"
# - "clip" nothing under pytorch examples - XXX: Suraj is working on adding some - check by end of Sep
SPEECH_TO_TEXT_TINY = "hf-internal-testing/tiny-random-speech_to_text"
# - "speech_to_text", nothing under pytorch examples
# *** Reactive mode ***
# models with low usage, unstable API, things about to change - do nothing about the following until someone runs into a problem
TAPAS_TINY = "hf-internal-testing/tiny-random-tapas"
# additional notes on tapas
# 1. "Table must be of type pd.DataFrame" failure
# TODO: new models to add:
#
def get_launcher(distributed=False):
# 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup
# - it won't be able to handle that
# 2. for now testing with just 2 gpus max (since some quality tests may give different
# results with mode gpus because we use very little data)
num_gpus = min(2, get_gpu_count()) if distributed else 1
master_port = os.environ.get("DS_TEST_PORT", DEFAULT_MASTER_PORT)
return f"deepspeed --num_nodes 1 --num_gpus {num_gpus} --master_port {master_port}".split()
def make_task_cmds():
data_dir_samples = f"{FIXTURE_DIRECTORY}/tests_samples"
data_dir_wmt = f"{data_dir_samples}/wmt_en_ro"
data_dir_xsum = f"{data_dir_samples}/xsum"
args_main = """
--do_train
--max_train_samples 4
--per_device_train_batch_size 2
--num_train_epochs 1
--fp16
--report_to none
--overwrite_output_dir
""".split()
# try to cover as many models as possible once (it's enough to run on one task per model)
# but need a tiny model for each
#
# should have "{model_type.upper()}_TINY" corresponding vars defined, e.g., T5_TINY, etc.
tasks2models = {
"trans": [
"bart",
"fsmt",
"m2m_100",
"marian",
"mbart",
"t5",
"t5_v1",
# "mt5", missing model files
],
"sum": [
"pegasus",
],
"clm": [
"big_bird",
"bigbird_pegasus",
"blenderbot",
"bloom",
"gpt2",
"gpt_neo",
"gptj",
"xlm-roberta",
"prophetnet",
# "camembert", missing model files
],
"mlm": [
"albert",
"deberta",
"deberta-v2",
"distilbert",
"electra",
"flaubert",
"funnel",
"layoutlm",
# "reformer", # multiple issues with either mlm/qa/clas
],
"qa": [
"led",
"longformer",
"mobilebert",
"mpnet",
"roberta",
"squeezebert",
# "convbert", # missing tokenizer files
# "layoutlmv2", missing model files
],
"clas": [
"bert",
"xlnet",
# "hubert", # missing tokenizer files
# "ibert", # multiple issues with either mlm/qa/clas
# "transfo-xl", # tokenizer issues as Salesforce/ctrl
# "Salesforce/ctrl", # tokenizer issues
# "openai-community/openai-gpt", missing model files
# "tapas", multiple issues
],
"img_clas": [
"vit",
],
}
scripts_dir = f"{ROOT_DIRECTORY}/examples/pytorch"
tasks = {
"trans": f"""
{scripts_dir}/translation/run_translation.py
--train_file {data_dir_wmt}/train.json
--source_lang en
--target_lang ro
--max_source_length 12
--max_target_length 12
""",
"sum": f"""
{scripts_dir}/summarization/run_summarization.py
--train_file {data_dir_xsum}/sample.json
--max_source_length 12
--max_target_length 12
--lang en
""",
"clm": f"""
{scripts_dir}/language-modeling/run_clm.py
--train_file {FIXTURE_DIRECTORY}/sample_text.txt
--block_size 8
""",
"mlm": f"""
{scripts_dir}/language-modeling/run_mlm.py
--train_file {FIXTURE_DIRECTORY}/sample_text.txt
""",
"qa": f"""
{scripts_dir}/question-answering/run_qa.py
--train_file {data_dir_samples}/SQUAD/sample.json
""",
"clas": f"""
{scripts_dir}/text-classification/run_glue.py
--train_file {data_dir_samples}/MRPC/train.csv
--max_seq_length 12
--task_name MRPC
""",
"img_clas": f"""
{scripts_dir}/image-classification/run_image_classification.py
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--remove_unused_columns False
--max_steps 10
--image_processor_name {DS_TESTS_DIRECTORY}/vit_feature_extractor.json
--label_column_name labels
""",
}
launcher = get_launcher(distributed=True)
cmds = {}
for task, args in tasks.items():
args = args.split()
for model in tasks2models[task]:
model_name = globals()[f"{model.upper().replace('-', '_')}_TINY"]
args_model = f"--model_name_or_path {model_name}".split()
cmds[f"{task}_{model}"] = launcher + args + args_model + args_main
# # generation special case
# if task == "gen":
# launcher = f"deepspeed --num_nodes 1 --num_gpus 1".split()
# args_model += f"--model_type {model}".split()
# cmds[f"{task}_{model}"] = launcher + args + args_model
# else:
return cmds
task_cmds = make_task_cmds()
ZERO2 = "zero2"
ZERO3 = "zero3"
stages = [ZERO2, ZERO3]
# future preparation:
# for now test just fp16, as these tests are quite slow
# FP16 = "fp16"
# BF16 = "bf16"
#
# dtypes = [FP16]
# so just hardcoding --fp16 for now
# if is_torch_bf16_gpu_available():
# dtypes += [BF16]
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args))
return f"{func.__name__}_{param_based_name}"
# Cartesian-product of zero stages with models to test
params = list(itertools.product(stages, task_cmds.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class TestDeepSpeedModelZoo(TestCasePlus):
"""This class is for testing via an external script - can do multiple gpus"""
def get_task_cmd(self, task, stage):
# return a ready to run train cmd
if task not in task_cmds:
raise ValueError(f"don't know of task {task}, have {task_cmds.keys()}")
cmd = task_cmds[task]
args_ds = f"--deepspeed {self.test_file_dir_str}/ds_config_{stage}.json".split()
output_dir = self.get_auto_remove_tmp_dir()
args_out = f"--output_dir {output_dir}".split()
cmd += args_ds + args_out
return cmd, output_dir
@parameterized.expand(params, name_func=parameterized_custom_name_func)
def test_zero_to_fp32(self, stage, task):
# testing the ability to do a run followed by recovery of full fp32 weights
cmd, output_dir = self.get_task_cmd(task, stage)
# 1. generate the checkpoint
cmd += "--save_steps 1".split()
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] + cmd)); die
execute_subprocess_async(cmd, env=self.get_env())
# 2. test that the fp32 weights get reconsolidated
chkpt_dir = f"{output_dir}/checkpoint-1"
recovered_model_path = f"{chkpt_dir}/out.bin"
cmd = f"{chkpt_dir}/zero_to_fp32.py {chkpt_dir} {recovered_model_path}"
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
subprocess.check_call(cmd, shell=True)
assert os.path.exists(recovered_model_path), f"{recovered_model_path} was not found"
# possibly could also test that the resulting saved model is usable but given that we use
# random models we won't know if it's any good