Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import tempfile | |
import unittest | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
from transformers.testing_utils import ( | |
is_torch_available, | |
require_optimum, | |
require_torch, | |
slow, | |
) | |
if is_torch_available(): | |
import torch | |
class BetterTransformerIntegrationTest(unittest.TestCase): | |
# refer to the full test suite in Optimum library: | |
# https://github.com/huggingface/optimum/tree/main/tests/bettertransformer | |
def test_transform_and_reverse(self): | |
r""" | |
Classic tests to simply check if the conversion has been successfull. | |
""" | |
model_id = "hf-internal-testing/tiny-random-t5" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
inp = tokenizer("This is me", return_tensors="pt") | |
model = model.to_bettertransformer() | |
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) | |
output = model.generate(**inp) | |
model = model.reverse_bettertransformer() | |
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules())) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname) | |
model_reloaded = AutoModelForSeq2SeqLM.from_pretrained(tmpdirname) | |
self.assertFalse( | |
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules()) | |
) | |
output_from_pretrained = model_reloaded.generate(**inp) | |
self.assertTrue(torch.allclose(output, output_from_pretrained)) | |
def test_error_save_pretrained(self): | |
r""" | |
The save_pretrained method should raise a ValueError if the model is in BetterTransformer mode. | |
All should be good if the model is reversed. | |
""" | |
model_id = "hf-internal-testing/tiny-random-t5" | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_id) | |
model = model.to_bettertransformer() | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
with self.assertRaises(ValueError): | |
model.save_pretrained(tmpdirname) | |
model = model.reverse_bettertransformer() | |
model.save_pretrained(tmpdirname) | |