Michielo commited on
Commit
3d8785e
·
verified ·
1 Parent(s): 451b329

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -11
app.py CHANGED
@@ -2,7 +2,6 @@ import streamlit as st
2
  import torch
3
  import torch.nn as nn
4
  from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
5
- from huggingface_hub import login
6
  import os
7
  import time
8
 
@@ -65,17 +64,16 @@ class TinyTransformerForSequenceClassification(PreTrainedModel):
65
 
66
  # Load models and tokenizers
67
  @st.cache_resource
68
- def load_models_and_tokenizers(hf_token):
69
- login(token=hf_token)
70
  device = torch.device("cpu") # forcing CPU as overhead of inference on GPU slows down the inference
71
 
72
  models = {}
73
  tokenizers = {}
74
 
75
  # Load Tiny-toxic-detector
76
- config = TinyTransformerConfig.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
77
- models["Tiny-toxic-detector"] = TinyTransformerForSequenceClassification.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", config=config, use_auth_token=hf_token).to(device)
78
- tokenizers["Tiny-toxic-detector"] = AutoTokenizer.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", use_auth_token=hf_token)
79
 
80
  # Load other models
81
  model_configs = [
@@ -85,8 +83,8 @@ def load_models_and_tokenizers(hf_token):
85
  ]
86
 
87
  for model_name, model_class, tokenizer_name in model_configs:
88
- models[model_name] = model_class.from_pretrained(model_name, use_auth_token=hf_token).to(device)
89
- tokenizers[model_name] = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=hf_token)
90
 
91
  return models, tokenizers, device
92
 
@@ -142,8 +140,7 @@ def main():
142
  """)
143
 
144
  # Load models
145
- hf_token = os.getenv('AT')
146
- models, tokenizers, device = load_models_and_tokenizers(hf_token)
147
 
148
  # Reorder the models dictionary so that "Tiny-toxic-detector" is last
149
  model_names = sorted(models.keys(), key=lambda x: x == "Tiny-toxic-detector")
@@ -177,4 +174,4 @@ def main():
177
  st.warning("Please enter some text to classify.")
178
 
179
  if __name__ == "__main__":
180
- main()
 
2
  import torch
3
  import torch.nn as nn
4
  from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
 
5
  import os
6
  import time
7
 
 
64
 
65
  # Load models and tokenizers
66
  @st.cache_resource
67
+ def load_models_and_tokenizers():
 
68
  device = torch.device("cpu") # forcing CPU as overhead of inference on GPU slows down the inference
69
 
70
  models = {}
71
  tokenizers = {}
72
 
73
  # Load Tiny-toxic-detector
74
+ config = TinyTransformerConfig.from_pretrained("AssistantsLab/Tiny-Toxic-Detector")
75
+ models["Tiny-toxic-detector"] = TinyTransformerForSequenceClassification.from_pretrained("AssistantsLab/Tiny-Toxic-Detector", config=config).to(device)
76
+ tokenizers["Tiny-toxic-detector"] = AutoTokenizer.from_pretrained("AssistantsLab/Tiny-Toxic-Detector")
77
 
78
  # Load other models
79
  model_configs = [
 
83
  ]
84
 
85
  for model_name, model_class, tokenizer_name in model_configs:
86
+ models[model_name] = model_class.from_pretrained(model_name).to(device)
87
+ tokenizers[model_name] = AutoTokenizer.from_pretrained(tokenizer_name)
88
 
89
  return models, tokenizers, device
90
 
 
140
  """)
141
 
142
  # Load models
143
+ models, tokenizers, device = load_models_and_tokenizers()
 
144
 
145
  # Reorder the models dictionary so that "Tiny-toxic-detector" is last
146
  model_names = sorted(models.keys(), key=lambda x: x == "Tiny-toxic-detector")
 
174
  st.warning("Please enter some text to classify.")
175
 
176
  if __name__ == "__main__":
177
+ main()