Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import pipeline | |
| x = st.slider('Select a value') | |
| st.write(x, 'squared is', x * x) | |
| # Title and Description | |
| st.title("Translation Web App") | |
| st.write(""" | |
| # Powered by Hugging Face and Streamlit | |
| This app uses a pre-trained NLP model from Hugging Face to translate text from one language to another. | |
| You can enter text and select the source and target languages for translation. | |
| """) | |
| # Cache model to improve performance | |
| def load_model(): | |
| print("Loading translation model...") | |
| return pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") # Translation model: English to Russian | |
| # Initialize Hugging Face Translation Pipeline | |
| translator = load_model() | |
| # Language selection (user chooses source and target language) | |
| source_language = st.selectbox("Select Source Language", ["English", "French", "German", "Spanish", "Russian"]) | |
| target_language = st.selectbox("Select Target Language", ["English", "French", "German", "Spanish", "Russian"]) | |
| # Text input from the user | |
| user_input = st.text_area("Enter text to translate:") | |
| # Translate the input text | |
| if user_input: | |
| if source_language == target_language: | |
| st.write("Source and target language are the same. Please choose different languages.") | |
| else: | |
| # Translate using Hugging Face model | |
| translation = translator(user_input) | |
| translated_text = translation[0]['translation_text'] | |
| st.write(f"### Translated Text ({target_language}):") | |
| st.write(translated_text) |