Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import time | |
from ctransformers import AutoModelForCausalLM | |
from dl_hf_model import dl_hf_model | |
params = { | |
"max_new_tokens":512, | |
"stop":["<end>" ,"<|endoftext|>","["], | |
"temperature":0.7, | |
"top_p":0.8, | |
"stream":True, | |
"batch_size": 8} | |
#url = "https://huggingface.co/Aspik101/trurl-2-7b-GGML/blob/main/trurl-2-7b.ggmlv3.q8_0.bin" | |
#model_loc, file_size = dl_hf_model(url) | |
llm = AutoModelForCausalLM.from_pretrained("Aspik101/trurl-2-13b-GGML", model_type="llama") | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def parse_history(hist): | |
history_ = "" | |
for q, a in hist: | |
history_ += f"<user>: {q } \n" | |
if a: | |
history_ += f"<assistant>: {a} \n" | |
return history_ | |
def bot(history): | |
print("history: ",history) | |
prompt = f"Jesteś AI assystentem. Odpowiadaj po polsku. {parse_history(history)}. <assistant>:" | |
print("prompt: ",prompt) | |
stream = llm(prompt, **params) | |
history[-1][1] = "" | |
answer_save = "" | |
for character in stream: | |
history[-1][1] += character | |
answer_save += character | |
time.sleep(0.005) | |
yield history | |
print("answer_save: ",answer_save) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch() |