Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') | |
| # Function to segment face from image | |
| def segment_face(image): | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) | |
| for (x, y, w, h) in faces: | |
| face = image[y:y+h, x:x+w] | |
| face = cv2.resize(face, (256, 256)) | |
| face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) | |
| return face | |
| def main(): | |
| st.title("Face Segmentation") | |
| uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"]) | |
| if uploaded_file is not None: | |
| image = np.array(bytearray(uploaded_file.read()), dtype=np.uint8) | |
| image = cv2.imdecode(image, cv2.IMREAD_COLOR) | |
| face = segment_face(image) | |
| st.subheader("Original Image") | |
| st.image(image) | |
| st.subheader("Segmented Face") | |
| st.image(face) | |
| st.subheader("Download Segmented Face") | |
| st.download_button( | |
| label="Download", | |
| data=cv2.imencode('.png', face)[1].tostring(), | |
| file_name='segmented_face.png', | |
| mime='image/png' | |
| ) | |
| if __name__ == '__main__': | |
| main() |