Askari11's picture
Rename test.py to app.py
d0eca30 verified
raw
history blame
1.3 kB
import streamlit as st
import cv2
import numpy as np
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# Function to segment face from image
def segment_face(image):
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
face = image[y:y+h, x:x+w]
face = cv2.resize(face, (256, 256))
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
return face
def main():
st.title("Face Segmentation")
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
image = np.array(bytearray(uploaded_file.read()), dtype=np.uint8)
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
face = segment_face(image)
st.subheader("Original Image")
st.image(image)
st.subheader("Segmented Face")
st.image(face)
st.subheader("Download Segmented Face")
st.download_button(
label="Download",
data=cv2.imencode('.png', face)[1].tostring(),
file_name='segmented_face.png',
mime='image/png'
)
if __name__ == '__main__':
main()