Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
os.system("pip install transformers sentencepiece torch") | |
from transformers import M2M100ForConditionalGeneration | |
from tokenization_small100 import SMALL100Tokenizer | |
langs = """Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn), | |
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk), | |
Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn), | |
Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)""" | |
lang_list = [lang.strip() for lang in langs.split(',')] | |
def small100_tr(lang, text): | |
lang = lang.split(" ")[-1][1:-1] | |
tokenizer.tgt_lang = lang | |
encoded_text = tokenizer(text, return_tensors="pt") | |
generated_tokens = model.generate(**encoded_text) | |
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] | |
examples = [["French (fr)", "Life is like a box of chocolates."]] | |
output_text = gr.outputs.Textbox() | |
gr.Interface(small100_tr, inputs=[gr.inputs.Dropdown(lang_list, label=" Target Language"), 'text'], outputs=output_text, title="SMaLL100: Translate much faster between 100 languages", | |
description=description, | |
examples=examples | |
).launch() | |