small100trans / app.py
Ashrafb's picture
Update app.py
1c2c6e4
raw
history blame
2.49 kB
import gradio as gr
import os
os.system("pip install transformers sentencepiece torch")
from transformers import M2M100ForConditionalGeneration
from tokenization_small100 import SMALL100Tokenizer
langs = """Afrikaans (af), Amharic (am), Arabic (ar), Asturian (ast), Azerbaijani (az), Bashkir (ba), Belarusian (be), Bulgarian (bg), Bengali (bn), Breton (br), Bosnian (bs), Catalan; Valencian (ca), Cebuano (ceb), Czech (cs), Welsh (cy), Danish (da), German (de), Greeek (el), English (en), Spanish (es), Estonian (et), Persian (fa), Fulah (ff), Finnish (fi), French (fr), Western Frisian (fy), Irish (ga), Gaelic; Scottish Gaelic (gd), Galician (gl), Gujarati (gu), Hausa (ha), Hebrew (he), Hindi (hi), Croatian (hr), Haitian; Haitian Creole (ht), Hungarian (hu), Armenian (hy), Indonesian (id), Igbo (ig), Iloko (ilo), Icelandic (is), Italian (it), Japanese (ja), Javanese (jv), Georgian (ka), Kazakh (kk), Central Khmer (km), Kannada (kn),
Korean (ko), Luxembourgish; Letzeburgesch (lb), Ganda (lg), Lingala (ln), Lao (lo), Lithuanian (lt), Latvian (lv), Malagasy (mg), Macedonian (mk), Malayalam (ml), Mongolian (mn), Marathi (mr), Malay (ms), Burmese (my), Nepali (ne), Dutch; Flemish (nl), Norwegian (no), Northern Sotho (ns), Occitan (post 1500) (oc), Oriya (or), Panjabi; Punjabi (pa), Polish (pl), Pushto; Pashto (ps), Portuguese (pt), Romanian; Moldavian; Moldovan (ro), Russian (ru), Sindhi (sd), Sinhala; Sinhalese (si), Slovak (sk),
Slovenian (sl), Somali (so), Albanian (sq), Serbian (sr), Swati (ss), Sundanese (su), Swedish (sv), Swahili (sw), Tamil (ta), Thai (th), Tagalog (tl), Tswana (tn),
Turkish (tr), Ukrainian (uk), Urdu (ur), Uzbek (uz), Vietnamese (vi), Wolof (wo), Xhosa (xh), Yiddish (yi), Yoruba (yo), Chinese (zh), Zulu (zu)"""
lang_list = [lang.strip() for lang in langs.split(',')]
def small100_tr(lang, text):
lang = lang.split(" ")[-1][1:-1]
tokenizer.tgt_lang = lang
encoded_text = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded_text)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
examples = [["French (fr)", "Life is like a box of chocolates."]]
output_text = gr.outputs.Textbox()
gr.Interface(small100_tr, inputs=[gr.inputs.Dropdown(lang_list, label=" Target Language"), 'text'], outputs=output_text, title="SMaLL100: Translate much faster between 100 languages",
description=description,
examples=examples
).launch()