Create main.py
Browse files
main.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from fastapi.staticfiles import StaticFiles
|
| 3 |
+
from fastapi.responses import FileResponse
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import random
|
| 7 |
+
import string
|
| 8 |
+
import time
|
| 9 |
+
from queue import Queue
|
| 10 |
+
from threading import Thread
|
| 11 |
+
|
| 12 |
+
app = FastAPI()
|
| 13 |
+
|
| 14 |
+
text_gen = gr.Interface.load("models/Gustavosta/MagicPrompt-Stable-Diffusion")
|
| 15 |
+
proc1 = gr.Interface.load("models/dreamlike-art/dreamlike-photoreal-2.0")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def add_random_noise(prompt, noise_level=0.00):
|
| 20 |
+
if noise_level == 0:
|
| 21 |
+
noise_level = 0.00
|
| 22 |
+
percentage_noise = noise_level * 5
|
| 23 |
+
num_noise_chars = int(len(prompt) * (percentage_noise / 100))
|
| 24 |
+
noise_indices = random.sample(range(len(prompt)), num_noise_chars)
|
| 25 |
+
prompt_list = list(prompt)
|
| 26 |
+
noise_chars = list(string.ascii_letters + string.punctuation + ' ' + string.digits)
|
| 27 |
+
noise_chars.extend(['๐', '๐ฉ', '๐', '๐ค', '๐', '๐ค', '๐ญ', '๐', '๐ท', '๐คฏ', '๐คซ', '๐ฅด', '๐ด', '๐คฉ', '๐ฅณ', '๐', '๐ฉ', '๐คช', '๐', '๐คข', '๐', '๐น', '๐ป', '๐ค', '๐ฝ', '๐', '๐', '๐
', '๐', '๐', '๐', '๐', '๐', '๐', '๐ฎ', 'โค๏ธ', '๐', '๐', '๐', '๐', '๐ถ', '๐ฑ', '๐ญ', '๐น', '๐ฆ', '๐ป', '๐จ', '๐ฏ', '๐ฆ', '๐', '๐ฅ', '๐ง๏ธ', '๐', '๐', '๐ฅ', '๐ด', '๐', '๐บ', '๐ป', '๐ธ', '๐จ', '๐
', '๐', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', 'โ๏ธ', '๐ค๏ธ', 'โ
๏ธ', '๐ฅ๏ธ', '๐ฆ๏ธ', '๐ง๏ธ', '๐ฉ๏ธ', '๐จ๏ธ', '๐ซ๏ธ', 'โ๏ธ', '๐ฌ๏ธ', '๐จ', '๐ช๏ธ', '๐'])
|
| 28 |
+
for index in noise_indices:
|
| 29 |
+
prompt_list[index] = random.choice(noise_chars)
|
| 30 |
+
return "".join(prompt_list)
|
| 31 |
+
|
| 32 |
+
# Existing code...
|
| 33 |
+
|
| 34 |
+
import uuid # Import the UUID library
|
| 35 |
+
|
| 36 |
+
# Existing code...
|
| 37 |
+
|
| 38 |
+
# Existing code...
|
| 39 |
+
|
| 40 |
+
request_counter = 0 # Global counter to track requests
|
| 41 |
+
|
| 42 |
+
def send_it1(inputs, noise_level, proc=proc1):
|
| 43 |
+
global request_counter
|
| 44 |
+
request_counter += 1
|
| 45 |
+
timestamp = f"{time.time()}_{request_counter}"
|
| 46 |
+
prompt_with_noise = add_random_noise(inputs, noise_level) + f" - {timestamp}"
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
while queue.qsize() >= queue_threshold:
|
| 50 |
+
time.sleep(2)
|
| 51 |
+
queue.put(prompt_with_noise)
|
| 52 |
+
output = proc(prompt_with_noise)
|
| 53 |
+
return output
|
| 54 |
+
except Exception as e:
|
| 55 |
+
# Display a generic error message to the user
|
| 56 |
+
raise gr.Error("Experiencing high demand. Please retry shortly. Thank you for your patience.")
|
| 57 |
+
|
| 58 |
+
import random
|
| 59 |
+
|
| 60 |
+
import random
|
| 61 |
+
import time
|
| 62 |
+
|
| 63 |
+
# ... (existing code)
|
| 64 |
+
|
| 65 |
+
import random
|
| 66 |
+
import time
|
| 67 |
+
|
| 68 |
+
# ... (existing code)
|
| 69 |
+
|
| 70 |
+
def get_prompts(prompt_text):
|
| 71 |
+
if not prompt_text:
|
| 72 |
+
return "Please enter text before generating prompts.ุฑุฌุงุก ุงุฏุฎู ุงููุต ุงููุง"
|
| 73 |
+
raise gr.Error("Please enter text before generating prompts.ุฑุฌุงุก ุงุฏุฎู ุงููุต ุงููุง")
|
| 74 |
+
else:
|
| 75 |
+
global request_counter
|
| 76 |
+
request_counter += 1
|
| 77 |
+
timestamp = f"{time.time()}_{request_counter}"
|
| 78 |
+
|
| 79 |
+
options = [
|
| 80 |
+
"Cyberpunk android",
|
| 81 |
+
"2060",
|
| 82 |
+
"newyork",
|
| 83 |
+
"style of laurie greasley" , "studio ghibli" , "akira toriyama" , "james gilleard" , "genshin impact" , "trending pixiv fanbox" , "acrylic palette knife, 4k, vibrant colors, devinart, trending on artstation, low details"
|
| 84 |
+
"Editorial Photography, Shot on 70mm lens, Depth of Field, Bokeh, DOF, Tilt Blur, Shutter Speed 1/1000, F/22, 32k, Super-Resolution, award winning,",
|
| 85 |
+
"high detail, warm lighting, godrays, vivid, beautiful, trending on artstation, by jordan grimmer, huge scene, grass, art greg rutkowski ",
|
| 86 |
+
"highly detailed, digital painting, artstation, illustration, art by artgerm and greg rutkowski and alphonse mucha.",
|
| 87 |
+
"Charlie Bowater, stanley artgerm lau, a character portrait, sots art, sharp focus, smooth, aesthetic, extremely detailed, octane render,solo, dark industrial background, rtx, rock clothes, cinematic light, intricate detail, highly detailed, high res, detailed facial features",
|
| 88 |
+
"portrait photograph" , "realistic" , "concept art" , "elegant, highly detailed" , "intricate, sharp focus, depth of field, f/1. 8, 85mm, medium shot, mid shot, (((professionally color graded)))" ," sharp focus, bright soft diffused light" , "(volumetric fog),",
|
| 89 |
+
"Cinematic film still" ," (dark city street:1.2)" , "(cold colors), damp, moist, intricate details" ,"shallow depth of field, [volumetric fog]" , "cinematic lighting, reflections, photographed on a Canon EOS R5, 50mm lens, F/2.8, HDR, 8k resolution" , "cinematic film still from cyberpunk movie" , "volumetric fog, (RAW, analog, masterpiece, best quality, soft particles, 8k, flawless perfect face, intricate details" , "trending on artstation, trending on cgsociety, dlsr, ultra sharp, hdr, rtx, antialiasing, canon 5d foto))" , "((skin details, high detailed skin texture))" , "(((perfect face))), (perfect eyes)))",
|
| 90 |
+
|
| 91 |
+
# Add other prompt options here...
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
if prompt_text:
|
| 95 |
+
chosen_option = random.choice(options)
|
| 96 |
+
return text_gen(f"{prompt_text}, {chosen_option} - {timestamp}")
|
| 97 |
+
else:
|
| 98 |
+
return text_gen("", timestamp)
|
| 99 |
+
|
| 100 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
| 101 |
+
|
| 102 |
+
@app.get("/")
|
| 103 |
+
def index() -> FileResponse:
|
| 104 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
| 105 |
+
|
| 106 |
+
@app.get("/generate_prompts")
|
| 107 |
+
def generate_prompts(prompt_text: str):
|
| 108 |
+
return get_prompts(prompt_text)
|
| 109 |
+
|
| 110 |
+
@app.get("/send_inputs")
|
| 111 |
+
def send_inputs(inputs: str, noise_level: float):
|
| 112 |
+
return send_it1(inputs, noise_level)
|
| 113 |
+
|