Update main.py
Browse files
main.py
CHANGED
@@ -1,57 +1,49 @@
|
|
1 |
-
from fastapi import FastAPI,
|
2 |
-
from fastapi.responses import HTMLResponse
|
3 |
-
from
|
4 |
from huggingface_hub import InferenceClient
|
5 |
-
import
|
6 |
-
|
7 |
-
# Initialize the logger
|
8 |
-
logging.basicConfig(level=logging.INFO) # Adjust the logging level as needed
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
# Hugging Face Inference Client
|
12 |
-
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
-
|
17 |
-
def format_prompt(message, history):
|
18 |
-
prompt = "<s>"
|
19 |
-
for user_prompt, bot_response in history:
|
20 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
21 |
-
prompt += f" {bot_response}</s> "
|
22 |
-
prompt += f"[INST] {message} [/INST]"
|
23 |
-
return prompt
|
24 |
-
|
25 |
-
# Generate response from the model
|
26 |
-
def generate(prompt: str, history: list, temperature: float = 0.9, max_new_tokens: int = 512, top_p: float = 0.95, top_k: int = 50, repetition_penalty: float = 1.0) -> str:
|
27 |
-
try:
|
28 |
-
formatted_prompt = format_prompt(prompt, history)
|
29 |
-
logger.info(f"Formatted prompt: {formatted_prompt}")
|
30 |
-
bot_response = client.text_generation(
|
31 |
-
formatted_prompt, temperature=temperature, max_new_tokens=max_new_tokens,
|
32 |
-
top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, stream=True,
|
33 |
-
details=True, return_full_text=False
|
34 |
-
)
|
35 |
-
output = [response.token.text.strip() for response in bot_response if response.token.text.strip()]
|
36 |
-
logger.info(f"Bot response tokens: {output}")
|
37 |
-
return " ".join(output)
|
38 |
-
except Exception as e:
|
39 |
-
logger.error(f"Error generating text: {e}")
|
40 |
-
return ""
|
41 |
-
|
42 |
-
@app.post("/generate/")
|
43 |
-
async def generate_chat(request: Request, prompt: str = Form(...), history: str = Form(...), temperature: float = Form(0.9), max_new_tokens: int = Form(512), top_p: float = Form(0.95), top_k: int = Form(50), repetition_penalty: float = Form(1.0)):
|
44 |
-
history = eval(history) # Convert history string back to list
|
45 |
-
response = generate(prompt, history, temperature, max_new_tokens, top_p, top_k, repetition_penalty)
|
46 |
-
|
47 |
-
# Remove any HTML tags from the response
|
48 |
-
import re
|
49 |
-
response = re.sub('<[^<]+?>', '', response)
|
50 |
-
|
51 |
-
return {"response": response}
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
@app.get("/")
|
56 |
-
def
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, WebSocket
|
2 |
+
from fastapi.responses import HTMLResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
from huggingface_hub import InferenceClient
|
5 |
+
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
class MessageRequest(BaseModel):
|
12 |
+
message: str
|
13 |
+
history: list[tuple[str, str]]
|
14 |
+
system_message: str
|
15 |
+
max_tokens: int
|
16 |
+
temperature: float
|
17 |
+
top_p: float
|
18 |
|
19 |
@app.get("/")
|
20 |
+
async def get():
|
21 |
+
with open("index.html", "r") as file:
|
22 |
+
return HTMLResponse(content=file.read(), media_type="text/html")
|
23 |
+
|
24 |
+
@app.websocket("/ws")
|
25 |
+
async def websocket_endpoint(websocket: WebSocket):
|
26 |
+
await websocket.accept()
|
27 |
+
while True:
|
28 |
+
data = await websocket.receive_text()
|
29 |
+
request = MessageRequest(**json.loads(data))
|
30 |
+
messages = [{"role": "system", "content": request.system_message}]
|
31 |
+
for val in request.history:
|
32 |
+
if val[0]:
|
33 |
+
messages.append({"role": "user", "content": val[0]})
|
34 |
+
if val[1]:
|
35 |
+
messages.append({"role": "assistant", "content": val[1]})
|
36 |
+
messages.append({"role": "user", "content": request.message})
|
37 |
+
|
38 |
+
response = ""
|
39 |
+
for message in client.chat_completion(
|
40 |
+
messages,
|
41 |
+
max_tokens=request.max_tokens,
|
42 |
+
stream=True,
|
43 |
+
temperature=request.temperature,
|
44 |
+
top_p=request.top_p,
|
45 |
+
):
|
46 |
+
token = message.choices[0].delta.content
|
47 |
+
response += token
|
48 |
+
await websocket.send_text(json.dumps({"token": token}))
|
49 |
+
|