Ashrafb commited on
Commit
f83fa14
1 Parent(s): 7b484af

Rename app.py to main.py

Browse files
Files changed (2) hide show
  1. app.py +0 -136
  2. main.py +100 -0
app.py DELETED
@@ -1,136 +0,0 @@
1
- import os
2
-
3
- import cv2
4
- import gradio as gr
5
- import torch
6
- from basicsr.archs.srvgg_arch import SRVGGNetCompact
7
- from gfpgan.utils import GFPGANer
8
- from realesrgan.utils import RealESRGANer
9
-
10
- os.system("pip freeze")
11
- # download weights
12
- if not os.path.exists('realesr-general-x4v3.pth'):
13
- os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
14
- if not os.path.exists('GFPGANv1.2.pth'):
15
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
16
- if not os.path.exists('GFPGANv1.3.pth'):
17
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
18
- if not os.path.exists('GFPGANv1.4.pth'):
19
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
20
-
21
-
22
- torch.hub.download_url_to_file(
23
- 'https://thumbs.dreamstime.com/b/tower-bridge-traditional-red-bus-black-white-colors-view-to-tower-bridge-london-black-white-colors-108478942.jpg',
24
- 'a1.jpg')
25
- torch.hub.download_url_to_file(
26
- 'https://media.istockphoto.com/id/523514029/photo/london-skyline-b-w.jpg?s=612x612&w=0&k=20&c=kJS1BAtfqYeUDaORupj0sBPc1hpzJhBUUqEFfRnHzZ0=',
27
- 'a2.jpg')
28
- torch.hub.download_url_to_file(
29
- 'https://i.guim.co.uk/img/media/06f614065ed82ca0e917b149a32493c791619854/0_0_3648_2789/master/3648.jpg?width=700&quality=85&auto=format&fit=max&s=05764b507c18a38590090d987c8b6202',
30
- 'a3.jpg')
31
- torch.hub.download_url_to_file(
32
- 'https://i.pinimg.com/736x/46/96/9e/46969eb94aec2437323464804d27706d--victorian-london-victorian-era.jpg',
33
- 'a4.jpg')
34
-
35
- # background enhancer with RealESRGAN
36
- model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
37
- model_path = 'realesr-general-x4v3.pth'
38
- half = True if torch.cuda.is_available() else False
39
- upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
40
-
41
- os.makedirs('output', exist_ok=True)
42
-
43
-
44
- # def inference(img, version, scale, weight):
45
- def inference(img, version, scale):
46
- # weight /= 100
47
- print(img, version, scale)
48
- try:
49
- extension = os.path.splitext(os.path.basename(str(img)))[1]
50
- img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
51
- if len(img.shape) == 3 and img.shape[2] == 4:
52
- img_mode = 'RGBA'
53
- elif len(img.shape) == 2: # for gray inputs
54
- img_mode = None
55
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
56
- else:
57
- img_mode = None
58
-
59
- h, w = img.shape[0:2]
60
- if h < 300:
61
- img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
62
-
63
- if version == 'v1.2':
64
- face_enhancer = GFPGANer(
65
- model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
66
- elif version == 'v1.3':
67
- face_enhancer = GFPGANer(
68
- model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
69
- elif version == 'v1.4':
70
- face_enhancer = GFPGANer(
71
- model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
72
- elif version == 'RestoreFormer':
73
- face_enhancer = GFPGANer(
74
- model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
75
- elif version == 'CodeFormer':
76
- face_enhancer = GFPGANer(
77
- model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
78
- elif version == 'RealESR-General-x4v3':
79
- face_enhancer = GFPGANer(
80
- model_path='realesr-general-x4v3.pth', upscale=2, arch='realesr-general', channel_multiplier=2, bg_upsampler=upsampler)
81
-
82
- try:
83
- # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
84
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
85
- except RuntimeError as error:
86
- print('Error', error)
87
-
88
- try:
89
- if scale != 2:
90
- interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
91
- h, w = img.shape[0:2]
92
- output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
93
- except Exception as error:
94
- print('wrong scale input.', error)
95
- if img_mode == 'RGBA': # RGBA images should be saved in png format
96
- extension = 'png'
97
- else:
98
- extension = 'jpg'
99
- save_path = f'output/out.{extension}'
100
- cv2.imwrite(save_path, output)
101
-
102
- output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
103
- return output, save_path
104
- except Exception as error:
105
- print('global exception', error)
106
- return None, None
107
-
108
-
109
- title = "<span style='color: crimson;'>Aiconvert.online</span>"
110
- description = r"""
111
- """
112
- article = r"""
113
-
114
- """
115
- demo = gr.Interface(
116
- inference, [
117
- gr.inputs.Image(type="filepath", label="Input"),
118
- # gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'),
119
- gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4'], type="value", default='v1.4', label='version'),
120
- gr.inputs.Number(label="upscaling factor", default=2),
121
- # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50)
122
- ], [
123
- gr.Image(type="numpy", label="Output (The whole image)", show_share_button=False),
124
- gr.outputs.File(label="Download the output image")
125
- ],
126
- title=title,
127
- description=description,
128
- article=article,
129
- theme=gr.themes.Base(),
130
- css="footer{display:none !important;}",
131
- # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
132
- # ['10045.png', 'v1.4', 2, 50]]).launch()
133
- examples=[])
134
-
135
- demo.queue(concurrency_count=4)
136
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
main.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, Form, Request
2
+ from fastapi.responses import HTMLResponse, FileResponse
3
+ from fastapi.staticfiles import StaticFiles
4
+ from fastapi.templating import Jinja2Templates
5
+ import cv2
6
+ import os
7
+ import torch
8
+ from basicsr.archs.srvgg_arch import SRVGGNetCompact
9
+ from gfpgan.utils import GFPGANer
10
+ from realesrgan.utils import RealESRGANer
11
+
12
+ app = FastAPI()
13
+ app.mount("/static", StaticFiles(directory="static"), name="static")
14
+ templates = Jinja2Templates(directory="templates")
15
+
16
+ # Download weights if not exists
17
+ def download_weights():
18
+ weights = [
19
+ ('realesr-general-x4v3.pth', 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth'),
20
+ ('GFPGANv1.2.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth'),
21
+ ('GFPGANv1.3.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth'),
22
+ ('GFPGANv1.4.pth', 'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth')
23
+ ]
24
+ for weight_file, weight_url in weights:
25
+ if not os.path.exists(weight_file):
26
+ os.system(f"wget {weight_url} -P .")
27
+
28
+ # Initialize model and weights
29
+ def initialize_models():
30
+ model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
31
+ half = True if torch.cuda.is_available() else False
32
+ return model, half
33
+
34
+ # Perform image enhancement
35
+ def enhance_image(img_path, version, scale, model, half):
36
+ try:
37
+ input_img = cv2.imread(img_path)
38
+ face_enhancer = None
39
+
40
+ if version == 'v1.2':
41
+ face_enhancer = GFPGANer(
42
+ model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None)
43
+ elif version == 'v1.3':
44
+ face_enhancer = GFPGANer(
45
+ model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None)
46
+ elif version == 'v1.4':
47
+ face_enhancer = GFPGANer(
48
+ model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=None)
49
+ elif version == 'RealESR-General-x4v3':
50
+ face_enhancer = RealESRGANer(
51
+ scale=4, model_path='realesr-general-x4v3.pth', model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
52
+
53
+ if face_enhancer:
54
+ _, _, output = face_enhancer.enhance(input_img, has_aligned=False, only_center_face=False, paste_back=True)
55
+
56
+ if scale != 2:
57
+ interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
58
+ h, w = input_img.shape[0:2]
59
+ output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
60
+
61
+ output_path = f'output/out.jpg'
62
+ cv2.imwrite(output_path, output)
63
+
64
+ return output_path
65
+ else:
66
+ return None
67
+ except Exception as e:
68
+ print(f"Error enhancing image: {e}")
69
+ return None
70
+
71
+ # Download weights
72
+ download_weights()
73
+
74
+ # Initialize model
75
+ model, half = initialize_models()
76
+
77
+
78
+ @app.post("/process_image/")
79
+ async def process_image(file: UploadFile = File(...), version: str = Form(...), scale: int = Form(...)):
80
+ try:
81
+ contents = await file.read()
82
+ img_path = "temp.jpg"
83
+ with open(img_path, "wb") as f:
84
+ f.write(contents)
85
+
86
+ output_path = enhance_image(img_path, version, scale, model, half)
87
+
88
+ if output_path:
89
+ return FileResponse(output_path, media_type='image/jpeg')
90
+ else:
91
+ return {"error": "Failed to process the image."}
92
+ except Exception as e:
93
+ return {"error": f"An error occurred: {e}"}
94
+
95
+ app.mount("/", StaticFiles(directory="static", html=True), name="static")
96
+
97
+ @app.get("/")
98
+ def index() -> FileResponse:
99
+ return FileResponse(path="/app/static/index.html", media_type="text/html")
100
+