Spaces:
Runtime error
Runtime error
Update app_merged.py
Browse files- app_merged.py +331 -0
app_merged.py
CHANGED
@@ -58,6 +58,18 @@ from depth_anything_v2.dpt import DepthAnythingV2
|
|
58 |
import httpx
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
client = httpx.Client(timeout=httpx.Timeout(10.0)) # Set timeout to 10 seconds
|
62 |
NUM_VIEWS = 6
|
63 |
HEIGHT = 768
|
@@ -140,6 +152,13 @@ hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors
|
|
140 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
|
141 |
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
|
142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
sd15_name = 'stablediffusionapi/realistic-vision-v51'
|
145 |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
|
@@ -191,6 +210,183 @@ with torch.no_grad():
|
|
191 |
unet_original_forward = unet.forward
|
192 |
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def enable_efficient_attention():
|
195 |
if XFORMERS_AVAILABLE:
|
196 |
try:
|
@@ -1390,6 +1586,77 @@ with gr.Blocks() as app:
|
|
1390 |
|
1391 |
with gr.Column():
|
1392 |
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1393 |
|
1394 |
with gr.Row():
|
1395 |
with gr.Group():
|
@@ -1451,6 +1718,70 @@ with gr.Blocks() as app:
|
|
1451 |
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
|
1452 |
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
|
1453 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1454 |
|
1455 |
def convert_to_pil(image):
|
1456 |
try:
|
|
|
58 |
import httpx
|
59 |
|
60 |
|
61 |
+
import gradio as gr
|
62 |
+
import torch
|
63 |
+
from diffusers import FluxFillPipeline
|
64 |
+
from diffusers.utils import load_image
|
65 |
+
from PIL import Image, ImageDraw
|
66 |
+
import numpy as np
|
67 |
+
import spaces
|
68 |
+
from huggingface_hub import hf_hub_download
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
client = httpx.Client(timeout=httpx.Timeout(10.0)) # Set timeout to 10 seconds
|
74 |
NUM_VIEWS = 6
|
75 |
HEIGHT = 768
|
|
|
152 |
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
|
153 |
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
|
154 |
|
155 |
+
fill_pipe = FluxFillPipeline.from_pretrained(
|
156 |
+
"black-forest-labs/FLUX.1-Fill-dev",
|
157 |
+
torch_dtype=torch.bfloat16
|
158 |
+
).to("cuda")
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
|
163 |
sd15_name = 'stablediffusionapi/realistic-vision-v51'
|
164 |
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
|
|
|
210 |
unet_original_forward = unet.forward
|
211 |
|
212 |
|
213 |
+
def can_expand(source_width, source_height, target_width, target_height, alignment):
|
214 |
+
if alignment in ("Left", "Right") and source_width >= target_width:
|
215 |
+
return False
|
216 |
+
if alignment in ("Top", "Bottom") and source_height >= target_height:
|
217 |
+
return False
|
218 |
+
return True
|
219 |
+
|
220 |
+
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
221 |
+
target_size = (width, height)
|
222 |
+
|
223 |
+
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
|
224 |
+
new_width = int(image.width * scale_factor)
|
225 |
+
new_height = int(image.height * scale_factor)
|
226 |
+
|
227 |
+
source = image.resize((new_width, new_height), Image.LANCZOS)
|
228 |
+
|
229 |
+
if resize_option == "Full":
|
230 |
+
resize_percentage = 100
|
231 |
+
elif resize_option == "75%":
|
232 |
+
resize_percentage = 75
|
233 |
+
elif resize_option == "50%":
|
234 |
+
resize_percentage = 50
|
235 |
+
elif resize_option == "33%":
|
236 |
+
resize_percentage = 33
|
237 |
+
elif resize_option == "25%":
|
238 |
+
resize_percentage = 25
|
239 |
+
else: # Custom
|
240 |
+
resize_percentage = custom_resize_percentage
|
241 |
+
|
242 |
+
# Calculate new dimensions based on percentage
|
243 |
+
resize_factor = resize_percentage / 100
|
244 |
+
new_width = int(source.width * resize_factor)
|
245 |
+
new_height = int(source.height * resize_factor)
|
246 |
+
|
247 |
+
# Ensure minimum size of 64 pixels
|
248 |
+
new_width = max(new_width, 64)
|
249 |
+
new_height = max(new_height, 64)
|
250 |
+
|
251 |
+
# Resize the image
|
252 |
+
source = source.resize((new_width, new_height), Image.LANCZOS)
|
253 |
+
|
254 |
+
# Calculate the overlap in pixels based on the percentage
|
255 |
+
overlap_x = int(new_width * (overlap_percentage / 100))
|
256 |
+
overlap_y = int(new_height * (overlap_percentage / 100))
|
257 |
+
|
258 |
+
# Ensure minimum overlap of 1 pixel
|
259 |
+
overlap_x = max(overlap_x, 1)
|
260 |
+
overlap_y = max(overlap_y, 1)
|
261 |
+
|
262 |
+
# Calculate margins based on alignment
|
263 |
+
if alignment == "Middle":
|
264 |
+
margin_x = (target_size[0] - new_width) // 2
|
265 |
+
margin_y = (target_size[1] - new_height) // 2
|
266 |
+
elif alignment == "Left":
|
267 |
+
margin_x = 0
|
268 |
+
margin_y = (target_size[1] - new_height) // 2
|
269 |
+
elif alignment == "Right":
|
270 |
+
margin_x = target_size[0] - new_width
|
271 |
+
margin_y = (target_size[1] - new_height) // 2
|
272 |
+
elif alignment == "Top":
|
273 |
+
margin_x = (target_size[0] - new_width) // 2
|
274 |
+
margin_y = 0
|
275 |
+
elif alignment == "Bottom":
|
276 |
+
margin_x = (target_size[0] - new_width) // 2
|
277 |
+
margin_y = target_size[1] - new_height
|
278 |
+
|
279 |
+
# Adjust margins to eliminate gaps
|
280 |
+
margin_x = max(0, min(margin_x, target_size[0] - new_width))
|
281 |
+
margin_y = max(0, min(margin_y, target_size[1] - new_height))
|
282 |
+
|
283 |
+
# Create a new background image and paste the resized source image
|
284 |
+
background = Image.new('RGB', target_size, (255, 255, 255))
|
285 |
+
background.paste(source, (margin_x, margin_y))
|
286 |
+
|
287 |
+
# Create the mask
|
288 |
+
mask = Image.new('L', target_size, 255)
|
289 |
+
mask_draw = ImageDraw.Draw(mask)
|
290 |
+
|
291 |
+
# Calculate overlap areas
|
292 |
+
white_gaps_patch = 2
|
293 |
+
|
294 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
|
295 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
|
296 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
|
297 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
|
298 |
+
|
299 |
+
if alignment == "Left":
|
300 |
+
left_overlap = margin_x + overlap_x if overlap_left else margin_x
|
301 |
+
elif alignment == "Right":
|
302 |
+
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
|
303 |
+
elif alignment == "Top":
|
304 |
+
top_overlap = margin_y + overlap_y if overlap_top else margin_y
|
305 |
+
elif alignment == "Bottom":
|
306 |
+
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
|
307 |
+
|
308 |
+
# Draw the mask
|
309 |
+
mask_draw.rectangle([
|
310 |
+
(left_overlap, top_overlap),
|
311 |
+
(right_overlap, bottom_overlap)
|
312 |
+
], fill=0)
|
313 |
+
|
314 |
+
return background, mask
|
315 |
+
|
316 |
+
@spaces.GPU
|
317 |
+
def inpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom, progress=gr.Progress(track_tqdm=True)):
|
318 |
+
|
319 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
320 |
+
|
321 |
+
if not can_expand(background.width, background.height, width, height, alignment):
|
322 |
+
alignment = "Middle"
|
323 |
+
|
324 |
+
cnet_image = background.copy()
|
325 |
+
cnet_image.paste(0, (0, 0), mask)
|
326 |
+
|
327 |
+
final_prompt = prompt_input
|
328 |
+
|
329 |
+
#generator = torch.Generator(device="cuda").manual_seed(42)
|
330 |
+
|
331 |
+
fill_result = fill_pipe(
|
332 |
+
prompt=final_prompt,
|
333 |
+
height=height,
|
334 |
+
width=width,
|
335 |
+
image=cnet_image,
|
336 |
+
mask_image=mask,
|
337 |
+
num_inference_steps=num_inference_steps,
|
338 |
+
guidance_scale=30,
|
339 |
+
).images[0]
|
340 |
+
|
341 |
+
fill_result = result.convert("RGBA")
|
342 |
+
cnet_image.paste(result, (0, 0), mask)
|
343 |
+
|
344 |
+
return cnet_image, background
|
345 |
+
|
346 |
+
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
347 |
+
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
348 |
+
|
349 |
+
preview = background.copy().convert('RGBA')
|
350 |
+
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
|
351 |
+
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
|
352 |
+
red_mask.paste(red_overlay, (0, 0), mask)
|
353 |
+
preview = Image.alpha_composite(preview, red_mask)
|
354 |
+
|
355 |
+
return preview
|
356 |
+
|
357 |
+
def clear_result():
|
358 |
+
return gr.update(value=None)
|
359 |
+
|
360 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
361 |
+
if target_ratio == "9:16":
|
362 |
+
return 720, 1280, gr.update()
|
363 |
+
elif target_ratio == "16:9":
|
364 |
+
return 1280, 720, gr.update()
|
365 |
+
elif target_ratio == "1:1":
|
366 |
+
return 1024, 1024, gr.update()
|
367 |
+
elif target_ratio == "Custom":
|
368 |
+
return ui_width, ui_height, gr.update(open=True)
|
369 |
+
|
370 |
+
def select_the_right_preset(user_width, user_height):
|
371 |
+
if user_width == 720 and user_height == 1280:
|
372 |
+
return "9:16"
|
373 |
+
elif user_width == 1280 and user_height == 720:
|
374 |
+
return "16:9"
|
375 |
+
elif user_width == 1024 and user_height == 1024:
|
376 |
+
return "1:1"
|
377 |
+
else:
|
378 |
+
return "Custom"
|
379 |
+
|
380 |
+
def toggle_custom_resize_slider(resize_option):
|
381 |
+
return gr.update(visible=(resize_option == "Custom"))
|
382 |
+
|
383 |
+
def update_history(new_image, history):
|
384 |
+
if history is None:
|
385 |
+
history = []
|
386 |
+
history.insert(0, new_image)
|
387 |
+
return history
|
388 |
+
|
389 |
+
|
390 |
def enable_efficient_attention():
|
391 |
if XFORMERS_AVAILABLE:
|
392 |
try:
|
|
|
1586 |
|
1587 |
with gr.Column():
|
1588 |
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
|
1589 |
+
with gr.Group():
|
1590 |
+
gr.Markdown("Outpaint")
|
1591 |
+
with gr.Row():
|
1592 |
+
with gr.Column(scale=2):
|
1593 |
+
prompt_fill = gr.Textbox(label="Prompt (Optional)")
|
1594 |
+
with gr.Column(scale=1):
|
1595 |
+
fill_button = gr.Button("Generate")
|
1596 |
+
target_ratio = gr.Radio(
|
1597 |
+
label="Image Ratio",
|
1598 |
+
choices=["9:16", "16:9", "1:1", "Custom"],
|
1599 |
+
value="9:16",
|
1600 |
+
scale=3
|
1601 |
+
)
|
1602 |
+
alignment_dropdown = gr.Dropdown(
|
1603 |
+
choices=["Middle", "Left", "Right", "Top", "Bottom"],
|
1604 |
+
value="Middle",
|
1605 |
+
label="Alignment",
|
1606 |
+
)
|
1607 |
+
resize_option = gr.Radio(
|
1608 |
+
label="Resize input image",
|
1609 |
+
choices=["Full", "75%", "50%", "33%", "25%", "Custom"],
|
1610 |
+
value="75%"
|
1611 |
+
)
|
1612 |
+
custom_resize_percentage = gr.Slider(
|
1613 |
+
label="Custom resize (%)",
|
1614 |
+
minimum=1,
|
1615 |
+
maximum=100,
|
1616 |
+
step=1,
|
1617 |
+
value=50,
|
1618 |
+
visible=False
|
1619 |
+
)
|
1620 |
+
|
1621 |
+
fill_result = gr.Image(
|
1622 |
+
interactive=False,
|
1623 |
+
label="Generated Image",
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
|
1627 |
+
with gr.Column():
|
1628 |
+
with gr.Row():
|
1629 |
+
width_slider = gr.Slider(
|
1630 |
+
label="Target Width",
|
1631 |
+
minimum=720,
|
1632 |
+
maximum=1536,
|
1633 |
+
step=8,
|
1634 |
+
value=720,
|
1635 |
+
)
|
1636 |
+
height_slider = gr.Slider(
|
1637 |
+
label="Target Height",
|
1638 |
+
minimum=720,
|
1639 |
+
maximum=1536,
|
1640 |
+
step=8,
|
1641 |
+
value=1280,
|
1642 |
+
)
|
1643 |
+
|
1644 |
+
num_inference_steps = gr.Slider(label="Steps", minimum=2, maximum=50, step=1, value=28)
|
1645 |
+
with gr.Group():
|
1646 |
+
overlap_percentage = gr.Slider(
|
1647 |
+
label="Mask overlap (%)",
|
1648 |
+
minimum=1,
|
1649 |
+
maximum=50,
|
1650 |
+
value=10,
|
1651 |
+
step=1
|
1652 |
+
)
|
1653 |
+
with gr.Row():
|
1654 |
+
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
|
1655 |
+
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
|
1656 |
+
with gr.Row():
|
1657 |
+
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
|
1658 |
+
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
|
1659 |
+
|
1660 |
|
1661 |
with gr.Row():
|
1662 |
with gr.Group():
|
|
|
1718 |
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
|
1719 |
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
|
1720 |
|
1721 |
+
# def use_output_as_input(output_image):
|
1722 |
+
# return output_image
|
1723 |
+
|
1724 |
+
# use_as_input_button.click(
|
1725 |
+
# fn=use_output_as_input,
|
1726 |
+
# inputs=[fill_result],
|
1727 |
+
# outputs=[input_image]
|
1728 |
+
# )
|
1729 |
+
|
1730 |
+
target_ratio.change(
|
1731 |
+
fn=preload_presets,
|
1732 |
+
inputs=[target_ratio, width_slider, height_slider],
|
1733 |
+
outputs=[width_slider, height_slider, settings_panel],
|
1734 |
+
queue=False
|
1735 |
+
)
|
1736 |
+
|
1737 |
+
width_slider.change(
|
1738 |
+
fn=select_the_right_preset,
|
1739 |
+
inputs=[width_slider, height_slider],
|
1740 |
+
outputs=[target_ratio],
|
1741 |
+
queue=False
|
1742 |
+
)
|
1743 |
+
|
1744 |
+
height_slider.change(
|
1745 |
+
fn=select_the_right_preset,
|
1746 |
+
inputs=[width_slider, height_slider],
|
1747 |
+
outputs=[target_ratio],
|
1748 |
+
queue=False
|
1749 |
+
)
|
1750 |
+
|
1751 |
+
resize_option.change(
|
1752 |
+
fn=toggle_custom_resize_slider,
|
1753 |
+
inputs=[resize_option],
|
1754 |
+
outputs=[custom_resize_percentage],
|
1755 |
+
queue=False
|
1756 |
+
)
|
1757 |
+
|
1758 |
+
fill_button.click(
|
1759 |
+
fn=clear_result,
|
1760 |
+
inputs=None,
|
1761 |
+
outputs=fill_result,
|
1762 |
+
).then(
|
1763 |
+
fn=inpaint,
|
1764 |
+
inputs=[result_gallery, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
1765 |
+
resize_option, custom_resize_percentage, prompt_fill, alignment_dropdown,
|
1766 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
1767 |
+
outputs=[fill_result])
|
1768 |
+
# ).then(
|
1769 |
+
# fn=lambda: gr.update(visible=True),
|
1770 |
+
# inputs=None,
|
1771 |
+
# outputs=use_as_input_button,
|
1772 |
+
# )
|
1773 |
+
|
1774 |
+
prompt_fill.submit(
|
1775 |
+
fn=clear_result,
|
1776 |
+
inputs=None,
|
1777 |
+
outputs=fill_result,
|
1778 |
+
).then(
|
1779 |
+
fn=inpaint,
|
1780 |
+
inputs=[result_gallery, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
1781 |
+
resize_option, custom_resize_percentage, prompt_fill, alignment_dropdown,
|
1782 |
+
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
1783 |
+
outputs=[fill_result])
|
1784 |
+
|
1785 |
|
1786 |
def convert_to_pil(image):
|
1787 |
try:
|