Spaces:
Runtime error
Runtime error
Update app_merged.py
Browse files- app_merged.py +28 -113
app_merged.py
CHANGED
@@ -841,8 +841,6 @@ def use_orientation(selected_image:gr.SelectData):
|
|
841 |
def process_image(input_image, input_text):
|
842 |
"""Main processing function for the Gradio interface"""
|
843 |
|
844 |
-
|
845 |
-
|
846 |
if isinstance(input_image, Image.Image):
|
847 |
input_image = np.array(input_image)
|
848 |
|
@@ -857,7 +855,6 @@ def process_image(input_image, input_text):
|
|
857 |
HEIGHT = 768
|
858 |
WIDTH = 768
|
859 |
|
860 |
-
|
861 |
# Initialize DDS client
|
862 |
config = Config(API_TOKEN)
|
863 |
client = Client(config)
|
@@ -867,8 +864,6 @@ def process_image(input_image, input_text):
|
|
867 |
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
868 |
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
|
869 |
|
870 |
-
|
871 |
-
|
872 |
# Save input image to temp file and get URL
|
873 |
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
|
874 |
cv2.imwrite(tmpfile.name, input_image)
|
@@ -884,11 +879,11 @@ def process_image(input_image, input_text):
|
|
884 |
|
885 |
if len(input_text) == 0:
|
886 |
task = DinoxTask(
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
)
|
891 |
-
|
892 |
client.run_task(task)
|
893 |
predictions = task.result.objects
|
894 |
classes = [pred.category for pred in predictions]
|
@@ -931,38 +926,24 @@ def process_image(input_image, input_text):
|
|
931 |
if len(detections) > 0:
|
932 |
# Get first mask
|
933 |
first_mask = detections.mask[0]
|
934 |
-
|
935 |
# Get original RGB image
|
936 |
img = input_image.copy()
|
937 |
-
|
938 |
H, W, C = img.shape
|
939 |
-
|
940 |
-
# Create RGBA image
|
941 |
alpha = np.zeros((H, W, 1), dtype=np.uint8)
|
942 |
-
|
943 |
-
alpha[first_mask] = 255
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
# Crop to mask bounds to minimize image size
|
948 |
-
# y_indices, x_indices = np.where(first_mask)
|
949 |
-
# y_min, y_max = y_indices.min(), y_indices.max()
|
950 |
-
# x_min, x_max = x_indices.min(), x_indices.max()
|
951 |
-
|
952 |
-
# Crop the RGBA image
|
953 |
-
# cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
|
954 |
-
|
955 |
-
# Set extracted foreground for mask mover
|
956 |
-
# mask_mover.set_extracted_fg(cropped_rgba)
|
957 |
|
958 |
-
# alpha = img[..., 3] > 0
|
959 |
-
H, W = alpha.shape
|
960 |
# get the bounding box of alpha
|
961 |
y, x = np.where(alpha > 0)
|
962 |
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
963 |
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
964 |
-
|
965 |
-
image_center =
|
966 |
# resize the longer side to H * 0.9
|
967 |
H, W, _ = image_center.shape
|
968 |
if H > W:
|
@@ -972,7 +953,7 @@ def process_image(input_image, input_text):
|
|
972 |
H = int(H * (WIDTH * 0.9) / W)
|
973 |
W = int(WIDTH * 0.9)
|
974 |
|
975 |
-
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
976 |
# pad to H, W
|
977 |
start_h = (HEIGHT - H) // 2
|
978 |
start_w = (WIDTH - W) // 2
|
@@ -982,10 +963,9 @@ def process_image(input_image, input_text):
|
|
982 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
983 |
image = (image * 255).clip(0, 255).astype(np.uint8)
|
984 |
image = Image.fromarray(image)
|
985 |
-
|
986 |
-
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
|
987 |
|
988 |
-
|
|
|
989 |
else:
|
990 |
# Run DINO-X detection
|
991 |
task = DinoxTask(
|
@@ -998,18 +978,6 @@ def process_image(input_image, input_text):
|
|
998 |
result = task.result
|
999 |
objects = result.objects
|
1000 |
|
1001 |
-
|
1002 |
-
|
1003 |
-
# for obj in objects:
|
1004 |
-
# input_boxes.append(obj.bbox)
|
1005 |
-
# confidences.append(obj.score)
|
1006 |
-
# cls_name = obj.category.lower().strip()
|
1007 |
-
# class_names.append(cls_name)
|
1008 |
-
# class_ids.append(class_name_to_id[cls_name])
|
1009 |
-
|
1010 |
-
# input_boxes = np.array(input_boxes)
|
1011 |
-
# class_ids = np.array(class_ids)
|
1012 |
-
|
1013 |
predictions = task.result.objects
|
1014 |
classes = [x.strip().lower() for x in input_text.split('.') if x]
|
1015 |
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
@@ -1037,46 +1005,12 @@ def process_image(input_image, input_text):
|
|
1037 |
for class_name, confidence
|
1038 |
in zip(class_names, confidences)
|
1039 |
]
|
1040 |
-
|
1041 |
-
# Initialize SAM2
|
1042 |
-
# torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
|
1043 |
-
# if torch.cuda.get_device_properties(0).major >= 8:
|
1044 |
-
# torch.backends.cuda.matmul.allow_tf32 = True
|
1045 |
-
# torch.backends.cudnn.allow_tf32 = True
|
1046 |
-
|
1047 |
-
# sam2_model = build_sam2(SAM2_MODEL_CONFIG, SAM2_CHECKPOINT, device=DEVICE)
|
1048 |
-
# sam2_predictor = SAM2ImagePredictor(sam2_model)
|
1049 |
-
# sam2_predictor.set_image(input_image)
|
1050 |
-
|
1051 |
-
# sam2_predictor = run_sam_inference(SAM_IMAGE_MODEL, input_image, detections)
|
1052 |
-
|
1053 |
-
|
1054 |
-
# Get masks from SAM2
|
1055 |
-
# masks, scores, logits = sam2_predictor.predict(
|
1056 |
-
# point_coords=None,
|
1057 |
-
# point_labels=None,
|
1058 |
-
# box=input_boxes,
|
1059 |
-
# multimask_output=False,
|
1060 |
-
# )
|
1061 |
-
|
1062 |
-
if masks.ndim == 4:
|
1063 |
-
masks = masks.squeeze(1)
|
1064 |
-
|
1065 |
-
# Create visualization
|
1066 |
-
# labels = [f"{class_name} {confidence:.2f}"
|
1067 |
-
# for class_name, confidence in zip(class_names, confidences)]
|
1068 |
-
|
1069 |
-
# detections = sv.Detections(
|
1070 |
-
# xyxy=input_boxes,
|
1071 |
-
# mask=masks.astype(bool),
|
1072 |
-
# class_id=class_ids
|
1073 |
-
# )
|
1074 |
|
1075 |
detections = sv.Detections(
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
|
1081 |
box_annotator = sv.BoxAnnotator()
|
1082 |
label_annotator = sv.LabelAnnotator()
|
@@ -1096,36 +1030,18 @@ def process_image(input_image, input_text):
|
|
1096 |
img = input_image.copy()
|
1097 |
H, W, C = img.shape
|
1098 |
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
# Create RGBA image
|
1104 |
alpha = np.zeros((H, W, 1), dtype=np.uint8)
|
1105 |
-
|
1106 |
-
alpha[first_mask] = 255
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
# Crop to mask bounds to minimize image size
|
1111 |
-
# y_indices, x_indices = np.where(first_mask)
|
1112 |
-
# y_min, y_max = y_indices.min(), y_indices.max()
|
1113 |
-
# x_min, x_max = x_indices.min(), x_indices.max()
|
1114 |
-
|
1115 |
-
# Crop the RGBA image
|
1116 |
-
# cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
|
1117 |
-
|
1118 |
-
# Set extracted foreground for mask mover
|
1119 |
-
# mask_mover.set_extracted_fg(cropped_rgba)
|
1120 |
-
|
1121 |
-
# alpha = img[..., 3] > 0
|
1122 |
-
H, W = alpha.shape
|
1123 |
# get the bounding box of alpha
|
1124 |
y, x = np.where(alpha > 0)
|
1125 |
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
1126 |
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
1127 |
-
|
1128 |
-
image_center =
|
1129 |
# resize the longer side to H * 0.9
|
1130 |
H, W, _ = image_center.shape
|
1131 |
if H > W:
|
@@ -1135,7 +1051,7 @@ def process_image(input_image, input_text):
|
|
1135 |
H = int(H * (WIDTH * 0.9) / W)
|
1136 |
W = int(WIDTH * 0.9)
|
1137 |
|
1138 |
-
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
1139 |
# pad to H, W
|
1140 |
start_h = (HEIGHT - H) // 2
|
1141 |
start_w = (WIDTH - W) // 2
|
@@ -1148,7 +1064,6 @@ def process_image(input_image, input_text):
|
|
1148 |
|
1149 |
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
|
1150 |
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
|
1151 |
-
|
1152 |
|
1153 |
|
1154 |
|
|
|
841 |
def process_image(input_image, input_text):
|
842 |
"""Main processing function for the Gradio interface"""
|
843 |
|
|
|
|
|
844 |
if isinstance(input_image, Image.Image):
|
845 |
input_image = np.array(input_image)
|
846 |
|
|
|
855 |
HEIGHT = 768
|
856 |
WIDTH = 768
|
857 |
|
|
|
858 |
# Initialize DDS client
|
859 |
config = Config(API_TOKEN)
|
860 |
client = Client(config)
|
|
|
864 |
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
865 |
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
|
866 |
|
|
|
|
|
867 |
# Save input image to temp file and get URL
|
868 |
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
|
869 |
cv2.imwrite(tmpfile.name, input_image)
|
|
|
879 |
|
880 |
if len(input_text) == 0:
|
881 |
task = DinoxTask(
|
882 |
+
image_url=image_url,
|
883 |
+
prompts=[TextPrompt(text="<prompt_free>")],
|
884 |
+
# targets=[DetectionTarget.BBox, DetectionTarget.Mask]
|
885 |
)
|
886 |
+
|
887 |
client.run_task(task)
|
888 |
predictions = task.result.objects
|
889 |
classes = [pred.category for pred in predictions]
|
|
|
926 |
if len(detections) > 0:
|
927 |
# Get first mask
|
928 |
first_mask = detections.mask[0]
|
929 |
+
|
930 |
# Get original RGB image
|
931 |
img = input_image.copy()
|
|
|
932 |
H, W, C = img.shape
|
933 |
+
|
934 |
+
# Create RGBA image with default 255 alpha
|
935 |
alpha = np.zeros((H, W, 1), dtype=np.uint8)
|
936 |
+
alpha[~first_mask] = 0 # 128 # for semi-transparency background
|
937 |
+
alpha[first_mask] = 255 # Make the foreground opaque
|
938 |
+
alpha = alpha.squeeze(-1) # Remove singleton dimension to become 2D
|
939 |
+
rgba = np.dstack((img, alpha)).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
940 |
|
|
|
|
|
941 |
# get the bounding box of alpha
|
942 |
y, x = np.where(alpha > 0)
|
943 |
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
944 |
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
945 |
+
|
946 |
+
image_center = rgba[y0:y1, x0:x1]
|
947 |
# resize the longer side to H * 0.9
|
948 |
H, W, _ = image_center.shape
|
949 |
if H > W:
|
|
|
953 |
H = int(H * (WIDTH * 0.9) / W)
|
954 |
W = int(WIDTH * 0.9)
|
955 |
|
956 |
+
image_center = np.array(Image.fromarray(image_center).resize((W, H), Image.LANCZOS))
|
957 |
# pad to H, W
|
958 |
start_h = (HEIGHT - H) // 2
|
959 |
start_w = (WIDTH - W) // 2
|
|
|
963 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
964 |
image = (image * 255).clip(0, 255).astype(np.uint8)
|
965 |
image = Image.fromarray(image)
|
|
|
|
|
966 |
|
967 |
+
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
|
968 |
+
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
|
969 |
else:
|
970 |
# Run DINO-X detection
|
971 |
task = DinoxTask(
|
|
|
978 |
result = task.result
|
979 |
objects = result.objects
|
980 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
981 |
predictions = task.result.objects
|
982 |
classes = [x.strip().lower() for x in input_text.split('.') if x]
|
983 |
class_name_to_id = {name: id for id, name in enumerate(classes)}
|
|
|
1005 |
for class_name, confidence
|
1006 |
in zip(class_names, confidences)
|
1007 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1008 |
|
1009 |
detections = sv.Detections(
|
1010 |
+
xyxy=boxes,
|
1011 |
+
mask=masks.astype(bool),
|
1012 |
+
class_id=class_ids,
|
1013 |
+
)
|
1014 |
|
1015 |
box_annotator = sv.BoxAnnotator()
|
1016 |
label_annotator = sv.LabelAnnotator()
|
|
|
1030 |
img = input_image.copy()
|
1031 |
H, W, C = img.shape
|
1032 |
|
1033 |
+
# Create RGBA image with default 255 alpha
|
|
|
|
|
|
|
|
|
1034 |
alpha = np.zeros((H, W, 1), dtype=np.uint8)
|
1035 |
+
alpha[~first_mask] = 0 # 128 for semi-transparency background
|
1036 |
+
alpha[first_mask] = 255 # Make the foreground opaque
|
1037 |
+
alpha = alpha.squeeze(-1) # Remove singleton dimension to become 2D
|
1038 |
+
rgba = np.dstack((img, alpha)).astype(np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1039 |
# get the bounding box of alpha
|
1040 |
y, x = np.where(alpha > 0)
|
1041 |
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
|
1042 |
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
|
1043 |
+
|
1044 |
+
image_center = rgba[y0:y1, x0:x1]
|
1045 |
# resize the longer side to H * 0.9
|
1046 |
H, W, _ = image_center.shape
|
1047 |
if H > W:
|
|
|
1051 |
H = int(H * (WIDTH * 0.9) / W)
|
1052 |
W = int(WIDTH * 0.9)
|
1053 |
|
1054 |
+
image_center = np.array(Image.fromarray(image_center).resize((W, H), Image.LANCZOS))
|
1055 |
# pad to H, W
|
1056 |
start_h = (HEIGHT - H) // 2
|
1057 |
start_w = (WIDTH - W) // 2
|
|
|
1064 |
|
1065 |
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
|
1066 |
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
|
|
|
1067 |
|
1068 |
|
1069 |
|