Ashoka74 commited on
Commit
8f819f8
ยท
verified ยท
1 Parent(s): be930ec

Update merged_app2.py

Browse files
Files changed (1) hide show
  1. merged_app2.py +16 -20
merged_app2.py CHANGED
@@ -150,12 +150,9 @@ def download_models():
150
  print(f"Error downloading {filename}: {e}")
151
 
152
  ensure_directories()
153
-
154
  download_models()
155
 
156
 
157
-
158
-
159
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
160
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
161
  hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
@@ -165,7 +162,6 @@ hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.sa
165
  t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
166
 
167
 
168
-
169
  sd15_name = 'stablediffusionapi/realistic-vision-v51'
170
  tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
171
  text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
@@ -173,23 +169,10 @@ vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
173
  unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
174
 
175
 
176
-
177
- # fill_pipe = FluxFillPipeline.from_single_file(
178
- # "https://huggingface.co/SporkySporkness/FLUX.1-Fill-dev-GGUF/flux1-fill-dev-fp16-Q5_0-GGUF.gguf",
179
- # text_encoder= text_encoder,
180
- # text_encoder_2 = t5_path,
181
- # ignore_mismatched_sizes=True,
182
- # low_cpu_mem_usage=False,
183
- # torch_dtype=torch.bfloat16
184
- # ).to("cuda")
185
-
186
  from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
187
  from transformers import T5EncoderModel
188
  import torch
189
 
190
- # transformer = FluxTransformer2DModel.from_pretrained("AlekseyCalvin/FluxFillDev_fp8_Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16).to("cuda")
191
- # text_encoder_2 = T5EncoderModel.from_pretrained("AlekseyCalvin/FluxFillDev_fp8_Diffusers", subfolder="text_encoder_2", torch_dtype=torch.bfloat16).to("cuda")
192
- # fill_pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16).to("cuda")
193
 
194
 
195
  ckpt_path = (
@@ -209,8 +192,6 @@ fill_pipe = FluxFillPipeline.from_pretrained(
209
  torch_dtype=torch.bfloat16,
210
  )
211
 
212
- fill_pipe.enable_model_cpu_offload()
213
-
214
 
215
  try:
216
  import xformers
@@ -221,6 +202,11 @@ except ImportError:
221
  XFORMERS_AVAILABLE = False
222
  print("xformers not available - Using default attention")
223
 
 
 
 
 
 
224
  # Memory optimizations for RTX 2070
225
  torch.backends.cudnn.benchmark = True
226
  if torch.cuda.is_available():
@@ -505,6 +491,9 @@ pipe = prepare_pipeline(
505
  dtype=dtype,
506
  )
507
 
 
 
 
508
 
509
  # Move models to device with consistent dtype
510
  text_encoder = text_encoder.to(device=device, dtype=dtype)
@@ -554,6 +543,10 @@ t2i_pipe = StableDiffusionPipeline(
554
  image_encoder=None
555
  )
556
 
 
 
 
 
557
  i2i_pipe = StableDiffusionImg2ImgPipeline(
558
  vae=vae,
559
  text_encoder=text_encoder,
@@ -566,6 +559,9 @@ i2i_pipe = StableDiffusionImg2ImgPipeline(
566
  image_encoder=None
567
  )
568
 
 
 
 
569
 
570
  @torch.inference_mode()
571
  def encode_prompt_inner(txt: str):
@@ -1054,7 +1050,7 @@ def use_orientation(selected_image:gr.SelectData):
1054
 
1055
 
1056
  def generate_description(object_description,image, detail="high", max_tokens=250):
1057
- openai_api_key = os.getenv["OPENAI_API_KEY"]
1058
  client = OpenAI(api_key=openai_api_key)
1059
 
1060
  if image is not None:
 
150
  print(f"Error downloading {filename}: {e}")
151
 
152
  ensure_directories()
 
153
  download_models()
154
 
155
 
 
 
156
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
157
  hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
158
  hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
 
162
  t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
163
 
164
 
 
165
  sd15_name = 'stablediffusionapi/realistic-vision-v51'
166
  tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
167
  text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
 
169
  unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
170
 
171
 
 
 
 
 
 
 
 
 
 
 
172
  from diffusers import FluxTransformer2DModel, FluxFillPipeline, GGUFQuantizationConfig
173
  from transformers import T5EncoderModel
174
  import torch
175
 
 
 
 
176
 
177
 
178
  ckpt_path = (
 
192
  torch_dtype=torch.bfloat16,
193
  )
194
 
 
 
195
 
196
  try:
197
  import xformers
 
202
  XFORMERS_AVAILABLE = False
203
  print("xformers not available - Using default attention")
204
 
205
+ fill_pipe.enable_model_cpu_offload()
206
+ fill_pipe.enable_vae_slicing()
207
+ fill_pipe.enable_xformers_memory_efficient_attention()
208
+
209
+
210
  # Memory optimizations for RTX 2070
211
  torch.backends.cudnn.benchmark = True
212
  if torch.cuda.is_available():
 
491
  dtype=dtype,
492
  )
493
 
494
+ pipe.enable_model_cpu_offload()
495
+ pipe.enable_vae_slicing()
496
+ pipe.enable_xformers_memory_efficient_attention()
497
 
498
  # Move models to device with consistent dtype
499
  text_encoder = text_encoder.to(device=device, dtype=dtype)
 
543
  image_encoder=None
544
  )
545
 
546
+ t2i_pipe.enable_model_cpu_offload()
547
+ t2i_pipe.enable_vae_slicing()
548
+ t2i_pipe.enable_xformers_memory_efficient_attention()
549
+
550
  i2i_pipe = StableDiffusionImg2ImgPipeline(
551
  vae=vae,
552
  text_encoder=text_encoder,
 
559
  image_encoder=None
560
  )
561
 
562
+ i2i_pipe.enable_model_cpu_offload()
563
+ i2i_pipe.enable_vae_slicing()
564
+ i2i_pipe.enable_xformers_memory_efficient_attention()
565
 
566
  @torch.inference_mode()
567
  def encode_prompt_inner(txt: str):
 
1050
 
1051
 
1052
  def generate_description(object_description,image, detail="high", max_tokens=250):
1053
+ openai_api_key = os.getenv("OPENAI_API_KEY")
1054
  client = OpenAI(api_key=openai_api_key)
1055
 
1056
  if image is not None: