Ashoka74's picture
Upload 25 files
fb5e185 verified
raw
history blame
2.69 kB
import math
from typing import List, Optional, Union
import numpy as np
import torch
from PIL import Image
def tensor_to_image(
data: Union[Image.Image, torch.Tensor, np.ndarray],
batched: bool = False,
format: str = "HWC",
) -> Union[Image.Image, List[Image.Image]]:
if isinstance(data, Image.Image):
return data
if isinstance(data, torch.Tensor):
data = data.detach().cpu().numpy()
if data.dtype == np.float32 or data.dtype == np.float16:
data = (data * 255).astype(np.uint8)
elif data.dtype == np.bool_:
data = data.astype(np.uint8) * 255
assert data.dtype == np.uint8
if format == "CHW":
if batched and data.ndim == 4:
data = data.transpose((0, 2, 3, 1))
elif not batched and data.ndim == 3:
data = data.transpose((1, 2, 0))
if batched:
return [Image.fromarray(d) for d in data]
return Image.fromarray(data)
def largest_factor_near_sqrt(n: int) -> int:
"""
Finds the largest factor of n that is closest to the square root of n.
Args:
n (int): The integer for which to find the largest factor near its square root.
Returns:
int: The largest factor of n that is closest to the square root of n.
"""
sqrt_n = int(math.sqrt(n)) # Get the integer part of the square root
# First, check if the square root itself is a factor
if sqrt_n * sqrt_n == n:
return sqrt_n
# Otherwise, find the largest factor by iterating from sqrt_n downwards
for i in range(sqrt_n, 0, -1):
if n % i == 0:
return i
# If n is 1, return 1
return 1
def make_image_grid(
images: List[Image.Image],
rows: Optional[int] = None,
cols: Optional[int] = None,
resize: Optional[int] = None,
) -> Image.Image:
"""
Prepares a single grid of images. Useful for visualization purposes.
"""
if rows is None and cols is not None:
assert len(images) % cols == 0
rows = len(images) // cols
elif cols is None and rows is not None:
assert len(images) % rows == 0
cols = len(images) // rows
elif rows is None and cols is None:
rows = largest_factor_near_sqrt(len(images))
cols = len(images) // rows
assert len(images) == rows * cols
if resize is not None:
images = [img.resize((resize, resize)) for img in images]
w, h = images[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(images):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid