Spaces:
Sleeping
Sleeping
Update app_3.py
Browse files
app_3.py
CHANGED
@@ -995,6 +995,8 @@ def use_orientation(selected_image:gr.SelectData):
|
|
995 |
@torch.inference_mode
|
996 |
def process_image(input_image, input_text):
|
997 |
"""Main processing function for the Gradio interface"""
|
|
|
|
|
998 |
|
999 |
if isinstance(input_image, Image.Image):
|
1000 |
input_image = np.array(input_image)
|
@@ -1117,17 +1119,17 @@ def process_image(input_image, input_text):
|
|
1117 |
# resize the longer side to H * 0.9
|
1118 |
H, W, _ = image_center.shape
|
1119 |
if H > W:
|
1120 |
-
W = int(W * (
|
1121 |
-
H = int(
|
1122 |
else:
|
1123 |
-
H = int(H * (
|
1124 |
-
W = int(
|
1125 |
|
1126 |
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
1127 |
# pad to H, W
|
1128 |
-
start_h = (
|
1129 |
-
start_w = (
|
1130 |
-
image = np.zeros((
|
1131 |
image[start_h : start_h + H, start_w : start_w + W] = image_center
|
1132 |
image = image.astype(np.float32) / 255.0
|
1133 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
@@ -1280,17 +1282,17 @@ def process_image(input_image, input_text):
|
|
1280 |
# resize the longer side to H * 0.9
|
1281 |
H, W, _ = image_center.shape
|
1282 |
if H > W:
|
1283 |
-
W = int(W * (
|
1284 |
-
H = int(
|
1285 |
else:
|
1286 |
-
H = int(H * (
|
1287 |
-
W = int(
|
1288 |
|
1289 |
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
1290 |
# pad to H, W
|
1291 |
-
start_h = (
|
1292 |
-
start_w = (
|
1293 |
-
image = np.zeros((
|
1294 |
image[start_h : start_h + H, start_w : start_w + W] = image_center
|
1295 |
image = image.astype(np.float32) / 255.0
|
1296 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
|
|
995 |
@torch.inference_mode
|
996 |
def process_image(input_image, input_text):
|
997 |
"""Main processing function for the Gradio interface"""
|
998 |
+
|
999 |
+
|
1000 |
|
1001 |
if isinstance(input_image, Image.Image):
|
1002 |
input_image = np.array(input_image)
|
|
|
1119 |
# resize the longer side to H * 0.9
|
1120 |
H, W, _ = image_center.shape
|
1121 |
if H > W:
|
1122 |
+
W = int(W * (HEIGHT * 0.9) / H)
|
1123 |
+
H = int(HEIGHT * 0.9)
|
1124 |
else:
|
1125 |
+
H = int(H * (WIDTH * 0.9) / W)
|
1126 |
+
W = int(WIDTH * 0.9)
|
1127 |
|
1128 |
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
1129 |
# pad to H, W
|
1130 |
+
start_h = (HEIGHT - H) // 2
|
1131 |
+
start_w = (WIDTH - W) // 2
|
1132 |
+
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
|
1133 |
image[start_h : start_h + H, start_w : start_w + W] = image_center
|
1134 |
image = image.astype(np.float32) / 255.0
|
1135 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|
|
|
1282 |
# resize the longer side to H * 0.9
|
1283 |
H, W, _ = image_center.shape
|
1284 |
if H > W:
|
1285 |
+
W = int(W * (HEIGHT * 0.9) / H)
|
1286 |
+
H = int(HEIGHT * 0.9)
|
1287 |
else:
|
1288 |
+
H = int(H * (WIDTH * 0.9) / W)
|
1289 |
+
W = int(WIDTH * 0.9)
|
1290 |
|
1291 |
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
|
1292 |
# pad to H, W
|
1293 |
+
start_h = (HEIGHT - H) // 2
|
1294 |
+
start_w = (WIDTH - W) // 2
|
1295 |
+
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
|
1296 |
image[start_h : start_h + H, start_w : start_w + W] = image_center
|
1297 |
image = image.astype(np.float32) / 255.0
|
1298 |
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
|