Demo_Refurnish / inference_i2mv_sdxl.py
Ashoka74's picture
Update inference_i2mv_sdxl.py
f845948 verified
import argparse
import numpy as np
import torch
from diffusers import AutoencoderKL, DDPMScheduler, LCMScheduler, UNet2DConditionModel
from PIL import Image
from torchvision import transforms
from tqdm import tqdm
from transformers import AutoModelForImageSegmentation
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
from mvadapter.pipelines.pipeline_mvadapter_i2mv_sdxl import MVAdapterI2MVSDXLPipeline
from mvadapter.schedulers.scheduling_shift_snr import ShiftSNRScheduler
from mvadapter.utils import (
get_orthogonal_camera,
get_plucker_embeds_from_cameras_ortho,
make_image_grid,
)
def prepare_pipeline(
base_model,
vae_model,
unet_model,
lora_model,
adapter_path,
scheduler,
num_views,
device,
dtype,
):
# Load vae and unet if provided
pipe_kwargs = {}
if vae_model is not None:
pipe_kwargs["vae"] = AutoencoderKL.from_pretrained(vae_model)
if unet_model is not None:
pipe_kwargs["unet"] = UNet2DConditionModel.from_pretrained(unet_model)
# Prepare pipeline
pipe: MVAdapterI2MVSDXLPipeline
pipe = MVAdapterI2MVSDXLPipeline.from_pretrained(base_model, **pipe_kwargs)
# Load scheduler if provided
scheduler_class = None
if scheduler == "ddpm":
scheduler_class = DDPMScheduler
elif scheduler == "lcm":
scheduler_class = LCMScheduler
pipe.scheduler = ShiftSNRScheduler.from_scheduler(
pipe.scheduler,
shift_mode="interpolated",
shift_scale=8.0,
scheduler_class=scheduler_class,
)
pipe.init_custom_adapter(num_views=num_views)
pipe.load_custom_adapter(
adapter_path, weight_name="mvadapter_i2mv_sdxl.safetensors"
)
pipe.to(device=device, dtype=dtype)
pipe.cond_encoder.to(device=device, dtype=dtype)
# load lora if provided
if lora_model is not None:
model_, name_ = lora_model.rsplit("/", 1)
pipe.load_lora_weights(model_, weight_name=name_)
# vae slicing for lower memory usage
pipe.enable_vae_slicing()
return pipe
def remove_bg(image: Image.Image, net, transform, device, mask: Image.Image = None):
"""
Applies a pre-existing mask to an image to make the background transparent.
Args:
image (PIL.Image.Image): The input image.
net: Pre-trained neural network (not used but kept for compatibility).
transform: Image transformation object (not used but kept for compatibility).
device: Device used for inference (not used but kept for compatibility).
mask (PIL.Image.Image, optional): The mask to use. Should be the same size
as the input image, with values between 0 and 255 (or 0-1).
If None, will return image with no changes.
Returns:
PIL.Image.Image: The modified image with transparent background.
"""
if mask is None:
return image
image_size = image.size
if mask.size != image_size:
mask = mask.resize(image_size) # Resizing the mask if it is not the same size as image
image.putalpha(mask)
return image
# def remove_bg(image, net, transform, device):
# image_size = image.size
# input_images = transform(image).unsqueeze(0).to(device)
# with torch.no_grad():
# preds = net(input_images)[0].sigmoid().cpu()
# #preds = net(input_images)[-1] if isinstance(net(input_images), list) else net(input_images)
# pred = preds[0].squeeze()
# pred_pil = transforms.ToPILImage()(pred)
# mask = pred_pil.resize(image_size)
# image.putalpha(mask)
# return image
# def remove_bg(image: Image.Image, net, transform, device):
# """
# Applies a pre-existing mask to an image to make the background transparent.
# Args:
# image (PIL.Image.Image): The input image.
# net: Pre-trained neural network (not used but kept for compatibility).
# transform: Image transformation object (not used but kept for compatibility).
# device: Device used for inference (not used but kept for compatibility).
# Returns:
# PIL.Image.Image: The modified image with transparent background.
# """
# image_size = image.size
# input_images = transform(image).unsqueeze(0).to(device)
# with torch.no_grad():
# preds = net(input_images)[-1].sigmoid().cpu()
# pred = preds[0].squeeze()
# pred_pil = transforms.ToPILImage()(pred)
# # Resize the mask to match the original image size
# mask = pred_pil.resize(image_size, Image.LANCZOS)
# # Create a new image with the same size and mode as the original
# output_image = Image.new("RGBA", image_size)
# # Apply the mask to the original image
# image.putalpha(mask)
# # Composite the original image with the mask
# output_image.paste(image, (0, 0), image)
# return output_image
def remove_bg(image: Image.Image, net, transform, device, mask: np.ndarray = None):
"""
Applies a pre-existing mask to an image to make the background transparent.
Args:
image (PIL.Image.Image): The input image.
net: Pre-trained neural network (not used but kept for compatibility).
transform: Image transformation object (not used but kept for compatibility).
device: Device used for inference (not used but kept for compatibility).
mask (np.ndarray, optional): The mask to use. Should be the same size
as the input image, with values between 0 and 255.
If None, will return image with no changes.
Returns:
PIL.Image.Image: The modified image with transparent background.
"""
if mask is None:
return image
# Ensure the mask is in the correct format
if mask.ndim == 2: # If mask is 2D (H, W)
mask = mask.astype(np.uint8) # Ensure mask is uint8
mask = np.expand_dims(mask, axis=-1) # Add channel dimension
# Convert the mask to PIL Image
mask_pil = Image.fromarray(mask.squeeze(2) * 255) # Convert to binary mask
# Resize the mask to match the original image size
mask_pil = mask_pil.resize(image.size, Image.LANCZOS)
# Create a new image with the same size and mode as the original
output_image = Image.new("RGBA", image.size)
# Apply the mask to the original image
image.putalpha(mask_pil)
# Composite the original image with the mask
output_image.paste(image, (0, 0), image)
return output_image
# def preprocess_image(image: Image.Image, height, width):
# alpha = image[..., 3] > 0
# # alpha = image
# #if image.mode in ("RGBA", "LA"):
# # image = np.array(image)
# # alpha = image[..., 3] # Extract the alpha channel
# #elif image.mode in ("RGB"):
# # image = np.array(image)
# # Create default alpha for non-alpha images
# # alpha = np.ones(image[..., 0].shape, dtype=np.uint8) * 255 # Create
# H, W = alpha.shape
# # get the bounding box of alpha
# y, x = np.where(alpha)
# y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
# x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
# image_center = image[y0:y1, x0:x1]
# # resize the longer side to H * 0.9
# H, W, _ = image_center.shape
# if H > W:
# W = int(W * (height * 0.9) / H)
# H = int(height * 0.9)
# else:
# H = int(H * (width * 0.9) / W)
# W = int(width * 0.9)
# image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# # pad to H, W
# start_h = (height - H) // 2
# start_w = (width - W) // 2
# image = np.zeros((height, width, 4), dtype=np.uint8)
# image[start_h : start_h + H, start_w : start_w + W] = image_center
# image = image.astype(np.float32) / 255.0
# image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
# image = (image * 255).clip(0, 255).astype(np.uint8)
# image = Image.fromarray(image)
# return image
def preprocess_image(image: Image.Image, height, width):
# Convert image to numpy array
image_np = np.array(image)
# Extract the alpha channel if present
if image_np.shape[-1] == 4:
alpha = image_np[..., 3] > 0 # Create a binary mask from the alpha channel
else:
alpha = np.ones(image_np[..., 0].shape, dtype=bool) # Default to all true for RGB images
H, W = alpha.shape
# Get the bounding box of the alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image_np[y0:y1, x0:x1]
# Resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# Pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
padded_image = np.zeros((height, width, 4), dtype=np.uint8)
padded_image[start_h:start_h + H, start_w:start_w + W] = image_center
# Convert back to PIL Image
return Image.fromarray(padded_image)
def run_pipeline(
pipe,
num_views,
text,
image,
height,
width,
num_inference_steps,
guidance_scale,
seed,
remove_bg_fn=None,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
lora_scale=1.0,
device="cuda",
):
# Prepare cameras
cameras = get_orthogonal_camera(
elevation_deg=[0, 0, 0, 0, 0, 0],
distance=[1.8] * num_views,
left=-0.55,
right=0.55,
bottom=-0.55,
top=0.55,
azimuth_deg=[x - 90 for x in [0, 45, 90, 180, 270, 315]],
device=device,
)
plucker_embeds = get_plucker_embeds_from_cameras_ortho(
cameras.c2w, [1.1] * num_views, width
)
control_images = ((plucker_embeds + 1.0) / 2.0).clamp(0, 1)
# Prepare image
# reference_image = Image.open(image) if isinstance(image, str) else image
# if remove_bg_fn is not None:
# reference_image = remove_bg_fn(reference_image)
# reference_image = preprocess_image(reference_image, height, width)
# elif reference_image.mode == "RGBA":
# reference_image = preprocess_image(reference_image, height, width)
reference_image = Image.open(image) if isinstance(image, str) else image
logging.info(f"Initial reference_image mode: {reference_image.mode}")
if remove_bg_fn is not None:
logging.info("Using remove_bg_fn")
reference_image = remove_bg_fn(reference_image)
reference_image = preprocess_image(reference_image, height, width)
elif reference_image.mode == "RGBA":
logging.info("Image is RGBA, preprocessing directly")
reference_image = preprocess_image(reference_image, height, width)
logging.info(f"Final reference_image mode: {reference_image.mode}")
pipe_kwargs = {}
if seed != -1 and isinstance(seed, int):
pipe_kwargs["generator"] = torch.Generator(device=device).manual_seed(seed)
images = pipe(
text,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_views,
control_image=control_images,
control_conditioning_scale=1.0,
reference_image=reference_image,
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
cross_attention_kwargs={"scale": lora_scale},
**pipe_kwargs,
).images
return images, reference_image
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Models
parser.add_argument(
"--base_model", type=str, default="stabilityai/stable-diffusion-xl-base-1.0"
)
parser.add_argument(
"--vae_model", type=str, default="madebyollin/sdxl-vae-fp16-fix"
)
parser.add_argument("--unet_model", type=str, default=None)
parser.add_argument("--scheduler", type=str, default=None)
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--adapter_path", type=str, default="huanngzh/mv-adapter")
parser.add_argument("--num_views", type=int, default=6)
# Device
parser.add_argument("--device", type=str, default="cuda")
# Inference
parser.add_argument("--image", type=str, required=True)
parser.add_argument("--text", type=str, default="high quality")
parser.add_argument("--num_inference_steps", type=int, default=50)
parser.add_argument("--guidance_scale", type=float, default=3.0)
parser.add_argument("--seed", type=int, default=-1)
parser.add_argument("--lora_scale", type=float, default=1.0)
parser.add_argument("--reference_conditioning_scale", type=float, default=1.0)
parser.add_argument(
"--negative_prompt",
type=str,
default="watermark, ugly, deformed, noisy, blurry, low contrast",
)
parser.add_argument("--output", type=str, default="output.png")
# Extra
parser.add_argument("--remove_bg", action="store_true", help="Remove background")
args = parser.parse_args()
pipe = prepare_pipeline(
base_model=args.base_model,
vae_model=args.vae_model,
unet_model=args.unet_model,
lora_model=args.lora_model,
adapter_path=args.adapter_path,
scheduler=args.scheduler,
num_views=args.num_views,
device=args.device,
dtype=torch.float16,
)
if args.remove_bg:
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(args.device)
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
remove_bg_fn = lambda x: remove_bg(x, birefnet, transform_image, args.device)
else:
remove_bg_fn = None
images, reference_image = run_pipeline(
pipe,
num_views=args.num_views,
text=args.text,
image=args.image,
height=768,
width=768,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
seed=args.seed,
lora_scale=args.lora_scale,
reference_conditioning_scale=args.reference_conditioning_scale,
negative_prompt=args.negative_prompt,
device=args.device,
remove_bg_fn=remove_bg_fn,
)
make_image_grid(images, rows=1).save(args.output)
reference_image.save(args.output.rsplit(".", 1)[0] + "_reference.png")