Demo_Refurnish / app_3.py
Ashoka74's picture
Update app_3.py
9db138f verified
raw
history blame
63.8 kB
import spaces
import argparse
import random
import os
import math
import gradio as gr
import numpy as np
import torch
import safetensors.torch as sf
import datetime
from pathlib import Path
from io import BytesIO
from PIL import Image
from diffusers import StableDiffusionPipeline, StableDiffusionImg2ImgPipeline
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from transformers import CLIPTextModel, CLIPTokenizer
import dds_cloudapi_sdk
from dds_cloudapi_sdk import Config, Client, TextPrompt
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks import DetectionTarget
from dds_cloudapi_sdk.tasks.detection import DetectionTask
from enum import Enum
from torch.hub import download_url_to_file
import tempfile
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
import cv2
from transformers import AutoModelForImageSegmentation
from inference_i2mv_sdxl import prepare_pipeline, remove_bg, run_pipeline
from torchvision import transforms
from typing import Optional
from depth_anything_v2.dpt import DepthAnythingV2
import httpx
client = httpx.Client(timeout=httpx.Timeout(10.0)) # Set timeout to 10 seconds
NUM_VIEWS = 6
HEIGHT = 768
WIDTH = 768
MAX_SEED = np.iinfo(np.int32).max
import supervision as sv
import torch
from PIL import Image
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s')
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# Load
# Model paths
model_path = './models/iclight_sd15_fc.safetensors'
model_path2 = './checkpoints/depth_anything_v2_vits.pth'
model_path3 = './checkpoints/sam2_hiera_large.pt'
model_path4 = './checkpoints/config.json'
model_path5 = './checkpoints/preprocessor_config.json'
model_path6 = './configs/sam2_hiera_l.yaml'
model_path7 = './mvadapter_i2mv_sdxl.safetensors'
# Base URL for the repository
BASE_URL = 'https://huggingface.co/Ashoka74/Placement/resolve/main/'
# Model URLs
model_urls = {
model_path: 'iclight_sd15_fc.safetensors',
model_path2: 'depth_anything_v2_vits.pth',
model_path3: 'sam2_hiera_large.pt',
model_path4: 'config.json',
model_path5: 'preprocessor_config.json',
model_path6: 'sam2_hiera_l.yaml',
model_path7: 'mvadapter_i2mv_sdxl.safetensors'
}
# Ensure directories exist
def ensure_directories():
for path in model_urls.keys():
os.makedirs(os.path.dirname(path), exist_ok=True)
# Download models
def download_models():
for local_path, filename in model_urls.items():
if not os.path.exists(local_path):
try:
url = f"{BASE_URL}{filename}"
print(f"Downloading {filename}")
download_url_to_file(url, local_path)
print(f"Successfully downloaded {filename}")
except Exception as e:
print(f"Error downloading {filename}: {e}")
ensure_directories()
download_models()
try:
import xformers
import xformers.ops
XFORMERS_AVAILABLE = True
print("xformers is available - Using memory efficient attention")
except ImportError:
XFORMERS_AVAILABLE = False
print("xformers not available - Using default attention")
# Memory optimizations for RTX 2070
torch.backends.cudnn.benchmark = True
if torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# Set a smaller attention slice size for RTX 2070
torch.backends.cuda.max_split_size_mb = 512
device = torch.device('cuda')
else:
device = torch.device('cpu')
# 'stablediffusionapi/realistic-vision-v51'
# 'runwayml/stable-diffusion-v1-5'
sd15_name = 'stablediffusionapi/realistic-vision-v51'
tokenizer = CLIPTokenizer.from_pretrained(sd15_name, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(sd15_name, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(sd15_name, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(sd15_name, subfolder="unet")
# Load model directly
from transformers import AutoModelForImageSegmentation
# rmbg = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-2.0", trust_remote_code=True)#, token=os.getenv('token'))
# rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
rmbg = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
rmbg = rmbg.to(device=device, dtype=torch.float32)
# remove bg
# rmbg = AutoModelForImageSegmentation.from_pretrained(
# "ZhengPeng7/BiRefNet", trust_remote_code=True
# )
# rmbg = rmbg.to(device)
model = DepthAnythingV2(encoder='vits', features=64, out_channels=[48, 96, 192, 384])
model.load_state_dict(torch.load('checkpoints/depth_anything_v2_vits.pth', map_location=device))
model = model.to(device)
model.eval()
# Change UNet
with torch.no_grad():
new_conv_in = torch.nn.Conv2d(8, unet.conv_in.out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding)
new_conv_in.weight.zero_()
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
new_conv_in.bias = unet.conv_in.bias
unet.conv_in = new_conv_in
unet_original_forward = unet.forward
def enable_efficient_attention():
if XFORMERS_AVAILABLE:
try:
# RTX 2070 specific settings
unet.set_use_memory_efficient_attention_xformers(True)
vae.set_use_memory_efficient_attention_xformers(True)
print("Enabled xformers memory efficient attention")
except Exception as e:
print(f"Xformers error: {e}")
print("Falling back to sliced attention")
# Use sliced attention for RTX 2070
# unet.set_attention_slice_size(4)
# vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
else:
# Fallback for when xformers is not available
print("Using sliced attention")
# unet.set_attention_slice_size(4)
# vae.set_attention_slice_size(4)
unet.set_attn_processor(AttnProcessor2_0())
vae.set_attn_processor(AttnProcessor2_0())
# Add memory clearing function
def clear_memory():
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
# Enable efficient attention
enable_efficient_attention()
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
c_concat = kwargs['cross_attention_kwargs']['concat_conds'].to(sample)
c_concat = torch.cat([c_concat] * (sample.shape[0] // c_concat.shape[0]), dim=0)
new_sample = torch.cat([sample, c_concat], dim=1)
kwargs['cross_attention_kwargs'] = {}
return unet_original_forward(new_sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
sd_offset = sf.load_file(model_path)
sd_origin = unet.state_dict()
keys = sd_origin.keys()
sd_merged = {k: sd_origin[k] + sd_offset[k] for k in sd_origin.keys()}
unet.load_state_dict(sd_merged, strict=True)
del sd_offset, sd_origin, sd_merged, keys
# Device
# device = torch.device('cuda')
# text_encoder = text_encoder.to(device=device, dtype=torch.float16)
# vae = vae.to(device=device, dtype=torch.bfloat16)
# unet = unet.to(device=device, dtype=torch.float16)
# rmbg = rmbg.to(device=device, dtype=torch.float32)
# Device and dtype setup
device = torch.device('cuda')
#dtype = torch.float16 # RTX 2070 works well with float16
dtype = torch.bfloat16
pipe = prepare_pipeline(
base_model="stabilityai/stable-diffusion-xl-base-1.0",
vae_model="madebyollin/sdxl-vae-fp16-fix",
unet_model=None,
lora_model=None,
adapter_path="huanngzh/mv-adapter",
scheduler=None,
num_views=NUM_VIEWS,
device=device,
dtype=dtype,
)
# Memory optimizations for RTX 2070
# torch.backends.cudnn.benchmark = True
# if torch.cuda.is_available():
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# # Set a very small attention slice size for RTX 2070 to avoid OOM
# torch.backends.cuda.max_split_size_mb = 128
# Move models to device with consistent dtype
text_encoder = text_encoder.to(device=device, dtype=dtype)
vae = vae.to(device=device, dtype=dtype) # Changed from bfloat16 to float16
unet = unet.to(device=device, dtype=dtype)
#rmbg = rmbg.to(device=device, dtype=torch.float32) # Keep this as float32
rmbg = rmbg.to(device)
ddim_scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
)
euler_a_scheduler = EulerAncestralDiscreteScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
steps_offset=1
)
dpmpp_2m_sde_karras_scheduler = DPMSolverMultistepScheduler(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.012,
algorithm_type="sde-dpmsolver++",
use_karras_sigmas=True,
steps_offset=1
)
# Pipelines
t2i_pipe = StableDiffusionPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
i2i_pipe = StableDiffusionImg2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=dpmpp_2m_sde_karras_scheduler,
safety_checker=None,
requires_safety_checker=False,
feature_extractor=None,
image_encoder=None
)
@torch.inference_mode()
def encode_prompt_inner(txt: str):
max_length = tokenizer.model_max_length
chunk_length = tokenizer.model_max_length - 2
id_start = tokenizer.bos_token_id
id_end = tokenizer.eos_token_id
id_pad = id_end
def pad(x, p, i):
return x[:i] if len(x) >= i else x + [p] * (i - len(x))
tokens = tokenizer(txt, truncation=False, add_special_tokens=False)["input_ids"]
chunks = [[id_start] + tokens[i: i + chunk_length] + [id_end] for i in range(0, len(tokens), chunk_length)]
chunks = [pad(ck, id_pad, max_length) for ck in chunks]
token_ids = torch.tensor(chunks).to(device=device, dtype=torch.int64)
conds = text_encoder(token_ids).last_hidden_state
return conds
@torch.inference_mode()
def encode_prompt_pair(positive_prompt, negative_prompt):
c = encode_prompt_inner(positive_prompt)
uc = encode_prompt_inner(negative_prompt)
c_len = float(len(c))
uc_len = float(len(uc))
max_count = max(c_len, uc_len)
c_repeat = int(math.ceil(max_count / c_len))
uc_repeat = int(math.ceil(max_count / uc_len))
max_chunk = max(len(c), len(uc))
c = torch.cat([c] * c_repeat, dim=0)[:max_chunk]
uc = torch.cat([uc] * uc_repeat, dim=0)[:max_chunk]
c = torch.cat([p[None, ...] for p in c], dim=1)
uc = torch.cat([p[None, ...] for p in uc], dim=1)
return c, uc
# @spaces.GPU(duration=60)
# @torch.inference_mode()
@spaces.GPU(duration=60)
@torch.inference_mode()
def infer(
prompt,
image, # This is already RGBA with background removed
do_rembg=True,
seed=42,
randomize_seed=False,
guidance_scale=3.0,
num_inference_steps=50,
reference_conditioning_scale=1.0,
negative_prompt="watermark, ugly, deformed, noisy, blurry, low contrast",
progress=gr.Progress(track_tqdm=True),
):
#logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
# Convert input to PIL if needed
if isinstance(image, np.ndarray):
if image.shape[-1] == 4: # RGBA
image = Image.fromarray(image, 'RGBA')
else: # RGB
image = Image.fromarray(image, 'RGB')
#logging.info(f"Converted to PIL Image mode: {image.mode}")
# No need for remove_bg_fn since image is already processed
remove_bg_fn = None
if randomize_seed:
seed = random.randint(0, MAX_SEED)
images, preprocessed_image = run_pipeline(
pipe,
num_views=NUM_VIEWS,
text=prompt,
image=image,
height=HEIGHT,
width=WIDTH,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
seed=seed,
remove_bg_fn=remove_bg_fn, # Set to None since preprocessing is done
reference_conditioning_scale=reference_conditioning_scale,
negative_prompt=negative_prompt,
device=device,
)
# logging.info(f"Output images shape: {[img.shape for img in images]}")
# logging.info(f"Preprocessed image shape: {preprocessed_image.shape if preprocessed_image is not None else None}")
return images
@spaces.GPU(duration=60)
@torch.inference_mode()
def pytorch2numpy(imgs, quant=True):
results = []
for x in imgs:
y = x.movedim(0, -1)
if quant:
y = y * 127.5 + 127.5
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
else:
y = y * 0.5 + 0.5
y = y.detach().float().cpu().numpy().clip(0, 1).astype(np.float32)
results.append(y)
return results
@spaces.GPU(duration=60)
@torch.inference_mode()
def numpy2pytorch(imgs):
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.0 - 1.0 # so that 127 must be strictly 0.0
h = h.movedim(-1, 1)
return h
def resize_and_center_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
original_width, original_height = pil_image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return np.array(cropped_image)
def resize_without_crop(image, target_width, target_height):
pil_image = Image.fromarray(image)
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
return np.array(resized_image)
# @spaces.GPU(duration=60)
# @torch.inference_mode()
# def run_rmbg(img, sigma=0.0):
# # Convert RGBA to RGB if needed
# if img.shape[-1] == 4:
# # Use white background for alpha composition
# alpha = img[..., 3:] / 255.0
# rgb = img[..., :3]
# white_bg = np.ones_like(rgb) * 255
# img = (rgb * alpha + white_bg * (1 - alpha)).astype(np.uint8)
# H, W, C = img.shape
# assert C == 3
# k = (256.0 / float(H * W)) ** 0.5
# feed = resize_without_crop(img, int(64 * round(W * k)), int(64 * round(H * k)))
# feed = numpy2pytorch([feed]).to(device=device, dtype=torch.float32)
# alpha = rmbg(feed)[0][0]
# alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
# alpha = alpha.movedim(1, -1)[0]
# alpha = alpha.detach().float().cpu().numpy().clip(0, 1)
# # Create RGBA image
# rgba = np.dstack((img, alpha * 255)).astype(np.uint8)
# result = 127 + (img.astype(np.float32) - 127 + sigma) * alpha
# return result.clip(0, 255).astype(np.uint8), rgba
@spaces.GPU
@torch.inference_mode()
def run_rmbg(image):
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = rmbg(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def preprocess_image(image: Image.Image, height=768, width=768):
image = np.array(image)
alpha = image[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = image[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (height * 0.9) / H)
H = int(height * 0.9)
else:
H = int(H * (width * 0.9) / W)
W = int(width * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (height - H) // 2
start_w = (width - W) // 2
image = np.zeros((height, width, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return image
@spaces.GPU(duration=60)
@torch.inference_mode()
def process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
clear_memory()
# Get input dimensions
input_height, input_width = input_fg.shape[:2]
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
if bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(input_height, input_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(255, 0, input_width)
image = np.tile(gradient, (input_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(0, 255, input_width)
image = np.tile(gradient, (input_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(255, 0, input_height)[:, None]
image = np.tile(gradient, (1, input_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(0, 255, input_height)[:, None]
image = np.tile(gradient, (1, input_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong initial latent!'
rng = torch.Generator(device=device).manual_seed(int(seed))
# Use input dimensions directly
fg = resize_without_crop(input_fg, input_width, input_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
if input_bg is None:
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=input_width,
height=input_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
else:
bg = resize_without_crop(input_bg, input_width, input_height)
bg_latent = numpy2pytorch([bg]).to(device=vae.device, dtype=vae.dtype)
bg_latent = vae.encode(bg_latent).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=bg_latent,
strength=lowres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=input_width,
height=input_height,
num_inference_steps=int(round(steps / lowres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [resize_without_crop(
image=p,
target_width=int(round(input_width * highres_scale / 64.0) * 64),
target_height=int(round(input_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
highres_height, highres_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_without_crop(input_fg, highres_width, highres_height)
concat_conds = numpy2pytorch([fg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=highres_width,
height=highres_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
# Resize back to input dimensions
pixels = [resize_without_crop(p, input_width, input_height) for p in pixels]
pixels = np.stack(pixels)
return pixels
def extract_foreground(image):
if image is None:
return None, gr.update(visible=True), gr.update(visible=True)
#logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
#result, rgba = run_rmbg(image)
result = run_rmbg(image)
result = preprocess_image(result)
#logging.info(f"Result shape: {result.shape}, dtype: {result.dtype}")
#logging.info(f"RGBA shape: {rgba.shape}, dtype: {rgba.dtype}")
return result, gr.update(visible=True), gr.update(visible=True)
def update_extracted_fg_height(selected_image: gr.SelectData):
if selected_image:
# Get the height of the selected image
height = selected_image.value['image']['shape'][0] # Assuming the image is in numpy format
return gr.update(height=height) # Update the height of extracted_fg
return gr.update(height=480) # Default height if no image is selected
@torch.inference_mode()
def process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
clear_memory()
bg_source = BGSource(bg_source)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise 'Wrong background source!'
rng = torch.Generator(device=device).manual_seed(seed)
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
conds, unconds = encode_prompt_pair(positive_prompt=prompt + ', ' + a_prompt, negative_prompt=n_prompt)
latents = t2i_pipe(
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=steps,
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels)
pixels = [resize_without_crop(
image=p,
target_width=int(round(image_width * highres_scale / 64.0) * 64),
target_height=int(round(image_height * highres_scale / 64.0) * 64))
for p in pixels]
pixels = numpy2pytorch(pixels).to(device=vae.device, dtype=vae.dtype)
latents = vae.encode(pixels).latent_dist.mode() * vae.config.scaling_factor
latents = latents.to(device=unet.device, dtype=unet.dtype)
image_height, image_width = latents.shape[2] * 8, latents.shape[3] * 8
fg = resize_and_center_crop(input_fg, image_width, image_height)
bg = resize_and_center_crop(input_bg, image_width, image_height)
concat_conds = numpy2pytorch([fg, bg]).to(device=vae.device, dtype=vae.dtype)
concat_conds = vae.encode(concat_conds).latent_dist.mode() * vae.config.scaling_factor
concat_conds = torch.cat([c[None, ...] for c in concat_conds], dim=1)
latents = i2i_pipe(
image=latents,
strength=highres_denoise,
prompt_embeds=conds,
negative_prompt_embeds=unconds,
width=image_width,
height=image_height,
num_inference_steps=int(round(steps / highres_denoise)),
num_images_per_prompt=num_samples,
generator=rng,
output_type='latent',
guidance_scale=cfg,
cross_attention_kwargs={'concat_conds': concat_conds},
).images.to(vae.dtype) / vae.config.scaling_factor
pixels = vae.decode(latents).sample
pixels = pytorch2numpy(pixels, quant=False)
clear_memory()
return pixels, [fg, bg]
@torch.inference_mode()
def process_relight(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source):
# Convert input foreground from PIL to NumPy array if it's in PIL format
if isinstance(input_fg, Image.Image):
input_fg = np.array(input_fg)
logging.info(f"Input foreground shape: {input_fg.shape}, dtype: {input_fg.dtype}")
results = process(input_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source)
logging.info(f"Results shape: {results.shape}, dtype: {results.dtype}")
return results
@torch.inference_mode()
def process_relight_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source):
bg_source = BGSource(bg_source)
# bg_source = "Use Background Image"
# Convert numerical inputs to appropriate types
image_width = int(image_width)
image_height = int(image_height)
num_samples = int(num_samples)
seed = int(seed)
steps = int(steps)
cfg = float(cfg)
highres_scale = float(highres_scale)
highres_denoise = float(highres_denoise)
if bg_source == BGSource.UPLOAD:
pass
elif bg_source == BGSource.UPLOAD_FLIP:
input_bg = np.fliplr(input_bg)
elif bg_source == BGSource.GREY:
input_bg = np.zeros(shape=(image_height, image_width, 3), dtype=np.uint8) + 64
elif bg_source == BGSource.LEFT:
gradient = np.linspace(224, 32, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.RIGHT:
gradient = np.linspace(32, 224, image_width)
image = np.tile(gradient, (image_height, 1))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.TOP:
gradient = np.linspace(224, 32, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
elif bg_source == BGSource.BOTTOM:
gradient = np.linspace(32, 224, image_height)[:, None]
image = np.tile(gradient, (1, image_width))
input_bg = np.stack((image,) * 3, axis=-1).astype(np.uint8)
else:
raise ValueError('Wrong background source!')
input_fg, matting = run_rmbg(input_fg)
results, extra_images = process_bg(input_fg, input_bg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, bg_source)
results = [(x * 255.0).clip(0, 255).astype(np.uint8) for x in results]
final_results = results + extra_images
# Save the generated images
save_images(results, prefix="relight")
return results
quick_prompts = [
'sunshine from window',
'golden time',
'natural lighting',
'warm atmosphere, at home, bedroom',
'shadow from window',
'soft studio lighting',
'home atmosphere, cozy bedroom illumination',
]
quick_prompts = [[x] for x in quick_prompts]
quick_subjects = [
'modern sofa, high quality leather',
'elegant dining table, polished wood',
'luxurious bed, premium mattress',
'minimalist office desk, clean design',
'vintage wooden cabinet, antique finish',
]
quick_subjects = [[x] for x in quick_subjects]
class BGSource(Enum):
UPLOAD = "Use Background Image"
UPLOAD_FLIP = "Use Flipped Background Image"
LEFT = "Left Light"
RIGHT = "Right Light"
TOP = "Top Light"
BOTTOM = "Bottom Light"
GREY = "Ambient"
# Add save function
def save_images(images, prefix="relight"):
# Create output directory if it doesn't exist
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Create timestamp for unique filenames
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
saved_paths = []
for i, img in enumerate(images):
if isinstance(img, np.ndarray):
# Convert to PIL Image if numpy array
img = Image.fromarray(img)
# Create filename with timestamp
filename = f"{prefix}_{timestamp}_{i+1}.png"
filepath = output_dir / filename
# Save image
img.save(filepath)
# print(f"Saved {len(saved_paths)} images to {output_dir}")
return saved_paths
class MaskMover:
def __init__(self):
self.extracted_fg = None
self.original_fg = None # Store original foreground
def set_extracted_fg(self, fg_image):
"""Store the extracted foreground with alpha channel"""
if isinstance(fg_image, np.ndarray):
self.extracted_fg = fg_image.copy()
self.original_fg = fg_image.copy()
else:
self.extracted_fg = np.array(fg_image)
self.original_fg = np.array(fg_image)
return self.extracted_fg
def create_composite(self, background, x_pos, y_pos, scale=1.0):
"""Create composite with foreground at specified position"""
if self.original_fg is None or background is None:
return background
# Convert inputs to PIL Images
if isinstance(background, np.ndarray):
bg = Image.fromarray(background).convert('RGBA')
else:
bg = background.convert('RGBA')
if isinstance(self.original_fg, np.ndarray):
fg = Image.fromarray(self.original_fg).convert('RGBA')
else:
fg = self.original_fg.convert('RGBA')
# Scale the foreground size
new_width = int(fg.width * scale)
new_height = int(fg.height * scale)
fg = fg.resize((new_width, new_height), Image.LANCZOS)
# Center the scaled foreground at the position
x = int(x_pos - new_width / 2)
y = int(y_pos - new_height / 2)
# Create composite
result = bg.copy()
result.paste(fg, (x, y), fg) # Use fg as the mask (requires fg to be in 'RGBA' mode)
return np.array(result.convert('RGB')) # Convert back to 'RGB' if needed
def get_depth(image):
if image is None:
return None
# Convert from PIL/gradio format to cv2
raw_img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
# Get depth map
depth = model.infer_image(raw_img) # HxW raw depth map
# Normalize depth for visualization
depth = ((depth - depth.min()) / (depth.max() - depth.min()) * 255).astype(np.uint8)
# Convert to RGB for display
depth_colored = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
return Image.fromarray(depth_colored)
from PIL import Image
def compress_image(image):
# Convert Gradio image (numpy array) to PIL Image
img = Image.fromarray(image)
# Resize image if dimensions are too large
max_size = 1024 # Maximum dimension size
if img.width > max_size or img.height > max_size:
ratio = min(max_size/img.width, max_size/img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.Resampling.LANCZOS)
quality = 95 # Start with high quality
img.save("compressed_image.jpg", "JPEG", quality=quality) # Initial save
# Check file size and adjust quality if necessary
while os.path.getsize("compressed_image.jpg") > 100 * 1024: # 100KB limit
quality -= 5 # Decrease quality
img.save("compressed_image.jpg", "JPEG", quality=quality)
if quality < 20: # Prevent quality from going too low
break
# Convert back to numpy array for Gradio
compressed_img = np.array(Image.open("compressed_image.jpg"))
return compressed_img
def use_orientation(selected_image:gr.SelectData):
return selected_image.value['image']['path']
@spaces.GPU(duration=60)
@torch.inference_mode
def process_image(input_image, input_text):
"""Main processing function for the Gradio interface"""
if isinstance(input_image, Image.Image):
input_image = np.array(input_image)
# Initialize configs
API_TOKEN = "9c8c865e10ec1821bea79d9fa9dc8720"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "configs/sam2_hiera_l.yaml")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_dinox_demo")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
HEIGHT = 768
WIDTH = 768
# Initialize DDS client
config = Config(API_TOKEN)
client = Client(config)
# Process classes from text prompt
classes = [x.strip().lower() for x in input_text.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
# Save input image to temp file and get URL
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
cv2.imwrite(tmpfile.name, input_image)
image_url = client.upload_file(tmpfile.name)
os.remove(tmpfile.name)
# Process detection results
input_boxes = []
masks = []
confidences = []
class_names = []
class_ids = []
if len(input_text) == 0:
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text="<prompt_free>")],
# targets=[DetectionTarget.BBox, DetectionTarget.Mask]
)
client.run_task(task)
predictions = task.result.objects
classes = [pred.category for pred in predictions]
classes = list(set(classes))
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
for idx, obj in enumerate(predictions):
input_boxes.append(obj.bbox)
masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size)) # convert mask to np.array using DDS API
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
boxes = np.array(input_boxes)
masks = np.array(masks)
class_ids = np.array(class_ids)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
detections = sv.Detections(
xyxy=boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
mask_annotator = sv.MaskAnnotator()
annotated_frame = input_image.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
# Create transparent mask for first detected object
if len(detections) > 0:
# Get first mask
first_mask = detections.mask[0]
# Get original RGB image
img = input_image.copy()
H, W, C = img.shape
# Create RGBA image
alpha = np.zeros((H, W, 1), dtype=np.uint8)
alpha[first_mask] = 255
# rgba = np.dstack((img, alpha)).astype(np.uint8)
# Crop to mask bounds to minimize image size
# y_indices, x_indices = np.where(first_mask)
# y_min, y_max = y_indices.min(), y_indices.max()
# x_min, x_max = x_indices.min(), x_indices.max()
# Crop the RGBA image
# cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
# Set extracted foreground for mask mover
# mask_mover.set_extracted_fg(cropped_rgba)
# alpha = img[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha > 0)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = img[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (HEIGHT * 0.9) / H)
H = int(HEIGHT * 0.9)
else:
H = int(H * (WIDTH * 0.9) / W)
W = int(WIDTH * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (HEIGHT - H) // 2
start_w = (WIDTH - W) // 2
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
else:
# Run DINO-X detection
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=input_text)],
targets=[DetectionTarget.BBox, DetectionTarget.Mask]
)
client.run_task(task)
result = task.result
objects = result.objects
# for obj in objects:
# input_boxes.append(obj.bbox)
# confidences.append(obj.score)
# cls_name = obj.category.lower().strip()
# class_names.append(cls_name)
# class_ids.append(class_name_to_id[cls_name])
# input_boxes = np.array(input_boxes)
# class_ids = np.array(class_ids)
predictions = task.result.objects
classes = [x.strip().lower() for x in input_text.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
boxes = []
masks = []
confidences = []
class_names = []
class_ids = []
for idx, obj in enumerate(predictions):
boxes.append(obj.bbox)
masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size)) # convert mask to np.array using DDS API
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
boxes = np.array(boxes)
masks = np.array(masks)
class_ids = np.array(class_ids)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
# Initialize SAM2
# torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
# if torch.cuda.get_device_properties(0).major >= 8:
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# sam2_model = build_sam2(SAM2_MODEL_CONFIG, SAM2_CHECKPOINT, device=DEVICE)
# sam2_predictor = SAM2ImagePredictor(sam2_model)
# sam2_predictor.set_image(input_image)
# sam2_predictor = run_sam_inference(SAM_IMAGE_MODEL, input_image, detections)
# Get masks from SAM2
# masks, scores, logits = sam2_predictor.predict(
# point_coords=None,
# point_labels=None,
# box=input_boxes,
# multimask_output=False,
# )
if masks.ndim == 4:
masks = masks.squeeze(1)
# Create visualization
# labels = [f"{class_name} {confidence:.2f}"
# for class_name, confidence in zip(class_names, confidences)]
# detections = sv.Detections(
# xyxy=input_boxes,
# mask=masks.astype(bool),
# class_id=class_ids
# )
detections = sv.Detections(
xyxy = boxes,
mask = masks.astype(bool),
class_id = class_ids,
)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
mask_annotator = sv.MaskAnnotator()
annotated_frame = input_image.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
# Create transparent mask for first detected object
if len(detections) > 0:
# Get first mask
first_mask = detections.mask[0]
# Get original RGB image
img = input_image.copy()
H, W, C = img.shape
first_mask = detections.mask[0]
# Create RGBA image
alpha = np.zeros((H, W, 1), dtype=np.uint8)
alpha[first_mask] = 255
# rgba = np.dstack((img, alpha)).astype(np.uint8)
# Crop to mask bounds to minimize image size
# y_indices, x_indices = np.where(first_mask)
# y_min, y_max = y_indices.min(), y_indices.max()
# x_min, x_max = x_indices.min(), x_indices.max()
# Crop the RGBA image
# cropped_rgba = rgba[y_min:y_max+1, x_min:x_max+1]
# Set extracted foreground for mask mover
# mask_mover.set_extracted_fg(cropped_rgba)
# alpha = img[..., 3] > 0
H, W = alpha.shape
# get the bounding box of alpha
y, x = np.where(alpha > 0)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = img[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (HEIGHT * 0.9) / H)
H = int(HEIGHT * 0.9)
else:
H = int(H * (WIDTH * 0.9) / W)
W = int(WIDTH * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H)))
# pad to H, W
start_h = (HEIGHT - H) // 2
start_w = (WIDTH - W) // 2
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
@spaces.GPU(duration=60)
@torch.inference_mode
def process_image(input_image, input_text):
"""Main processing function for the Gradio interface"""
if isinstance(input_image, Image.Image):
input_image = np.array(input_image)
# Initialize configs
API_TOKEN = "9c8c865e10ec1821bea79d9fa9dc8720"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = os.path.join(os.path.dirname(os.path.abspath(__file__)), "configs/sam2_hiera_l.yaml")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_dinox_demo")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
HEIGHT = 768
WIDTH = 768
# Initialize DDS client
config = Config(API_TOKEN)
client = Client(config)
# Process classes from text prompt
classes = [x.strip().lower() for x in input_text.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
# Save input image to temp file and get URL
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as tmpfile:
cv2.imwrite(tmpfile.name, input_image)
image_url = client.upload_file(tmpfile.name)
os.remove(tmpfile.name)
# Process detection results
input_boxes = []
masks = []
confidences = []
class_names = []
class_ids = []
if len(input_text) == 0:
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text="<prompt_free>")],
# targets=[DetectionTarget.BBox, DetectionTarget.Mask]
)
client.run_task(task)
predictions = task.result.objects
classes = [pred.category for pred in predictions]
classes = list(set(classes))
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
for idx, obj in enumerate(predictions):
input_boxes.append(obj.bbox)
masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size)) # convert mask to np.array using DDS API
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
boxes = np.array(input_boxes)
masks = np.array(masks)
class_ids = np.array(class_ids)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
detections = sv.Detections(
xyxy=boxes,
mask=masks.astype(bool),
class_id=class_ids
)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
mask_annotator = sv.MaskAnnotator()
annotated_frame = input_image.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
# Create transparent mask for first detected object
if len(detections) > 0:
# Get first mask
first_mask = detections.mask[0]
# Get original RGB image
img = input_image.copy()
H, W, C = img.shape
# Create RGBA image with default 255 alpha
alpha = np.zeros((H, W, 1), dtype=np.uint8)
alpha[~first_mask] = 128 # Set semi-transparency for background
alpha[first_mask] = 255 # Make the foreground opaque
rgba = np.dstack((img, alpha)).astype(np.uint8)
# get the bounding box of alpha
y, x = np.where(alpha > 0)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = rgba[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (HEIGHT * 0.9) / H)
H = int(HEIGHT * 0.9)
else:
H = int(H * (WIDTH * 0.9) / W)
W = int(WIDTH * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H), Image.LANCZOS))
# pad to H, W
start_h = (HEIGHT - H) // 2
start_w = (WIDTH - W) // 2
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
else:
# Run DINO-X detection
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=input_text)],
targets=[DetectionTarget.BBox, DetectionTarget.Mask]
)
client.run_task(task)
result = task.result
objects = result.objects
predictions = task.result.objects
classes = [x.strip().lower() for x in input_text.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
class_id_to_name = {id: name for name, id in class_name_to_id.items()}
boxes = []
masks = []
confidences = []
class_names = []
class_ids = []
for idx, obj in enumerate(predictions):
boxes.append(obj.bbox)
masks.append(DetectionTask.rle2mask(DetectionTask.string2rle(obj.mask.counts), obj.mask.size)) # convert mask to np.array using DDS API
confidences.append(obj.score)
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
boxes = np.array(boxes)
masks = np.array(masks)
class_ids = np.array(class_ids)
labels = [
f"{class_name} {confidence:.2f}"
for class_name, confidence
in zip(class_names, confidences)
]
detections = sv.Detections(
xyxy=boxes,
mask=masks.astype(bool),
class_id=class_ids,
)
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
mask_annotator = sv.MaskAnnotator()
annotated_frame = input_image.copy()
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
# Create transparent mask for first detected object
if len(detections) > 0:
# Get first mask
first_mask = detections.mask[0]
# Get original RGB image
img = input_image.copy()
H, W, C = img.shape
# Create RGBA image with default 255 alpha
alpha = np.zeros((H, W, 1), dtype=np.uint8)
alpha[~first_mask] = 128 # Set semi-transparency for background
alpha[first_mask] = 255 # Make the foreground opaque
rgba = np.dstack((img, alpha)).astype(np.uint8)
# get the bounding box of alpha
y, x = np.where(alpha > 0)
y0, y1 = max(y.min() - 1, 0), min(y.max() + 1, H)
x0, x1 = max(x.min() - 1, 0), min(x.max() + 1, W)
image_center = rgba[y0:y1, x0:x1]
# resize the longer side to H * 0.9
H, W, _ = image_center.shape
if H > W:
W = int(W * (HEIGHT * 0.9) / H)
H = int(HEIGHT * 0.9)
else:
H = int(H * (WIDTH * 0.9) / W)
W = int(WIDTH * 0.9)
image_center = np.array(Image.fromarray(image_center).resize((W, H), Image.LANCZOS))
# pad to H, W
start_h = (HEIGHT - H) // 2
start_w = (WIDTH - W) // 2
image = np.zeros((HEIGHT, WIDTH, 4), dtype=np.uint8)
image[start_h : start_h + H, start_w : start_w + W] = image_center
image = image.astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = (image * 255).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)
return annotated_frame, image, gr.update(visible=False), gr.update(visible=False)
return annotated_frame, None, gr.update(visible=False), gr.update(visible=False)
block = gr.Blocks().queue()
with block:
with gr.Tab("Text"):
with gr.Row():
gr.Markdown("## Product Placement from Text")
with gr.Row():
with gr.Column():
with gr.Row():
input_fg = gr.Image(type="pil", label="Image", height=480)
with gr.Row():
with gr.Group():
find_objects_button = gr.Button(value="(Option 1) Segment Object from text")
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Enter object classes separated by periods (e.g. 'car . person .'), leave empty to get all objects",
value=""
)
extract_button = gr.Button(value="Remove Background")
with gr.Row():
extracted_objects = gr.Image(type="numpy", label="Extracted Foreground", height=480)
extracted_fg = gr.Image(type="pil", label="Extracted Foreground", height=480)
angles_fg = gr.Image(type="pil", label="Converted Foreground", height=480, visible=False)
# output_bg = gr.Image(type="numpy", label="Preprocessed Foreground", height=480)
with gr.Group():
run_button = gr.Button("Generate alternative angles")
orientation_result = gr.Gallery(
label="Result",
show_label=False,
columns=[3],
rows=[2],
object_fit="fill",
height="auto",
allow_preview=False,
)
if orientation_result:
orientation_result.select(use_orientation, inputs=None, outputs=extracted_fg)
dummy_image_for_outputs = gr.Image(visible=False, label='Result')
with gr.Column():
result_gallery = gr.Gallery(height=832, object_fit='contain', label='Outputs')
with gr.Row():
with gr.Group():
prompt = gr.Textbox(label="Prompt")
bg_source = gr.Radio(choices=[e.value for e in list(BGSource)[2:]],
value=BGSource.LEFT.value,
label="Lighting Preference (Initial Latent)", type='value')
example_quick_subjects = gr.Dataset(samples=quick_subjects, label='Subject Quick List', samples_per_page=1000, components=[prompt])
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Lighting Quick List', samples_per_page=1000, components=[prompt])
with gr.Row():
relight_button = gr.Button(value="Relight")
with gr.Group(visible=False):
with gr.Row():
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
seed = gr.Number(label="Seed", value=12345, precision=0)
with gr.Row():
image_width = gr.Slider(label="Image Width", minimum=256, maximum=1024, value=512, step=64)
image_height = gr.Slider(label="Image Height", minimum=256, maximum=1024, value=640, step=64)
with gr.Accordion("Advanced options", open=False):
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=15, step=1)
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=2, step=0.01, visible=False)
lowres_denoise = gr.Slider(label="Lowres Denoise (for initial latent)", minimum=0.1, maximum=1.0, value=0.9, step=0.01)
highres_scale = gr.Slider(label="Highres Scale", minimum=1.0, maximum=3.0, value=1.5, step=0.01)
highres_denoise = gr.Slider(label="Highres Denoise", minimum=0.1, maximum=1.0, value=0.5, step=0.01)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality', visible=False)
n_prompt = gr.Textbox(label="Negative Prompt", value='lowres, bad anatomy, bad hands, cropped, worst quality', visible=False)
x_slider = gr.Slider(
minimum=0,
maximum=1000,
label="X Position",
value=500,
visible=False
)
y_slider = gr.Slider(
minimum=0,
maximum=1000,
label="Y Position",
value=500,
visible=False
)
# with gr.Row():
# gr.Examples(
# fn=lambda *args: ([args[-1]], None),
# examples=db_examples.foreground_conditioned_examples,
# inputs=[
# input_fg, prompt, bg_source, image_width, image_height, seed, dummy_image_for_outputs
# ],
# outputs=[result_gallery, output_bg],
# run_on_click=True, examples_per_page=1024
# )
ips = [extracted_fg, prompt, image_width, image_height, num_samples, seed, steps, a_prompt, n_prompt, cfg, highres_scale, highres_denoise, lowres_denoise, bg_source]
relight_button.click(fn=process_relight, inputs=ips, outputs=[result_gallery])
example_quick_prompts.click(lambda x, y: ', '.join(y.split(', ')[:2] + [x[0]]), inputs=[example_quick_prompts, prompt], outputs=prompt, show_progress=False, queue=False)
example_quick_subjects.click(lambda x: x[0], inputs=example_quick_subjects, outputs=prompt, show_progress=False, queue=False)
def convert_to_pil(image):
try:
#logging.info(f"Input image shape: {image.shape}, dtype: {image.dtype}")
image = image.astype(np.uint8)
logging.info(f"Converted image shape: {image.shape}, dtype: {image.dtype}")
return image
except Exception as e:
logging.error(f"Error converting image: {e}")
return image
run_button.click(
fn=convert_to_pil,
inputs=extracted_fg, # This is already RGBA with removed background
outputs=angles_fg
).then(
fn=infer,
inputs=[
text_prompt,
extracted_fg, # Already processed RGBA image
],
outputs=[orientation_result],
)
find_objects_button.click(
fn=process_image,
inputs=[input_fg, text_prompt],
outputs=[extracted_objects, extracted_fg]
)
extract_button.click(
fn=extract_foreground,
inputs=[input_fg],
outputs=[extracted_fg, x_slider, y_slider]
)
block.launch(server_name='0.0.0.0', share=False)