DeepMap_GUI / app.py
AshmithaIRRI's picture
Update app.py
2746d19 verified
raw
history blame
20.9 kB
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 10:25:34 2025
@author: Ashmitha
"""
#-----------------------------------------------------------Libraries----------------------------------------------------------------------------
import pandas as pd
import numpy as np
import gradio as gr
#! pip install scikit-learn
from sklearn.metrics import mean_squared_error,r2_score
from scipy.stats import pearsonr
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import KFold
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU,Dense,Dropout,BatchNormalization,LeakyReLU
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import regularizers
from tensorflow.keras.callbacks import ReduceLROnPlateau,EarlyStopping
import os
from sklearn.preprocessing import MinMaxScaler
from keras.layers import Conv1D,MaxPooling1D,Dense,Flatten,Dropout,LeakyReLU
from keras.callbacks import ReduceLROnPlateau,EarlyStopping
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
import io
from sklearn.feature_selection import SelectFromModel
import tempfile
import pyinstaller
#--------------------------------Random Forest for Feature selection-------------------------------------------
def RandomForestFeatureSelection(trainX, trainy,num_features=60):
rf=RandomForestRegressor(n_estimators=1000,random_state=50)
rf.fit(trainX,trainy)
importances=rf.feature_importances_
indices=np.argsort(importances)[-num_features:]
return indices
#------------------------------------------------------------------GRU model--------------------------------------------------
def GRUModel(trainX,trainy,testX,testy,epochs=1000,batch_size=64,learning_rate=0.0001,l1_reg=0.001,l2_reg=0.001,dropout_rate=0.2,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf,threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance")
scaler=MinMaxScaler()
trainX_scaled=scaler.fit_transform(trainX)
if testX is not None:
testX_scaled=scaler.transform(testX)
target_scaler=MinMaxScaler()
trainy_scaled=target_scaler.fit_transform(trainy.reshape(-1,1))
trainX=trainX_scaled.reshape((trainX.shape[0],1,trainX.shape[1]))
if testX is not None:
testX=testX_scaled.reshape((testX.shape[0],1,testX.shape[1]))
model=Sequential()
model.add(GRU(512, input_shape=(trainX.shape[1],trainX.shape[2]), return_sequences=False,kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
model.add(Dense(256,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(128,kernel_initializer="he_normal",kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(64,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(32,kernel_initializer='he_normal',kernel_regularizer=regularizers.l1_l2(l1=l1_reg,l2=l2_reg)))
model.add(BatchNormalization())
model.add(Dropout(dropout_rate))
model.add(LeakyReLU(alpha=0.1))
model.add(Dense(1,activation="relu"))
model.compile(loss="mse",optimizer=Adam(learning_rate=learning_rate),metrics=["mse"])
learning_rate_reduction=ReduceLROnPlateau(monitor="val_loss",patience=10,verbose=1,factor=0.5,min_lr=1e-6)
early_stopping=EarlyStopping(monitor='val_loss',verbose=1,restore_best_weights=True,patience=10)
history = model.fit(trainX, trainy_scaled, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
predicted_train=model.predict(trainX)
predicted_test=model.predict(testX) if testX is not None else None
predicted_train=model.predict(trainX)
predicted_test=model.predict(testX) if testX is not None else None
predicted_train=predicted_train.flatten()
if predicted_test is not None:
predicted_test =predicted_test.flatten()
else:
predicted_test=np.zeros_like(predicted_train)
predicted_train=target_scaler.inverse_transform(predicted_train.reshape(-1,1)).flatten()
if predicted_test is not None:
predicted_test=target_scaler.inverse_transform(predicted_test.reshape(-1,1).flatten())
return predicted_train.predicted_test,history
#----------------------------------------------------CNN-----------------------------------------------
def CNNModel(trainX,trainy,testX,testy,epochs=1000,batch_size=64,learning_rate=0.0001,l1_reg=0.0001,l2_reg=0.0001,dropout_rate=0.3,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf,threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the importance feature")
scaler=MinMaxScaler()
trainX_scaled=scaler.fit.transform(trainX)
if testX is not None:
testX_scaled=scaler.transfom(testX)
trainX=trainX_scaled.reshape((trainX.shape[0], trainX.shape[1],1))
if testX is not None:
testX = testX_scaled.reshape((testX.shape[0]),testX.shape[1],1)
model=Sequential()
model.add(Conv1D(512, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(256, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Conv1D(128, kernel_size=3, activation='relu', input_shape=(trainX.shape[1], 1), kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(dropout_rate))
model.add(Flatten())
model.add(Dense(64, kernel_regularizer=regularizers.l1_l2(l1=l1_reg, l2=l2_reg)))
model.add(LeakyReLU(alpha=0.1))
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer=Adam(learning_rate=learning_rate), metrics=['mse'])
learning_rate_reduction = ReduceLROnPlateau(monitor='val_loss', patience=5, verbose=1, factor=0.5, min_lr=1e-6)
early_stopping = EarlyStopping(monitor='val_loss', verbose=1, restore_best_weights=True, patience=10)
history = model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, validation_split=0.1, verbose=1,
callbacks=[learning_rate_reduction, early_stopping])
predicted_train = model.predict(trainX).flatten()
predicted_test = model.predict(testX).flatten() if testX is not None else None
return predicted_train, predicted_test, history
#-------------------------------------------------------------------RFModel---------------------------------------------------------
def RFModel(trainX, trainy, testX, testy, n_estimators=100, max_depth=None,feature_selection=True):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(trainX, trainy)
selector=SelectFromModel(rf, threshold="mean", prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} feature based on the feature selection")
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
rf_model = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=42)
history=rf_model.fit(trainX_scaled, trainy)
predicted_train = rf_model.predict(trainX_scaled)
predicted_test = rf_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#------------------------------------------------------------------------------XGboost---------------------------------------------------------------
def XGBoostModel(trainX, trainy, testX, testy,learning_rate,min_child_weight,feature_selection=True, n_estimators=100, max_depth=None):
if feature_selection:
rf=RandomForestRegressor(n_estimators=100,random_state=42)
rf.fit(trainX,trainy)
selector=SelectFromModel(rf,threshold="mean",prefit=True)
trainX=selector.transform(trainX)
if testX is not None:
testX=selector.transform(testX)
print(f"Selected {trainX.shape[1]} features based on feature importance")
scaler = MinMaxScaler()
trainX_scaled = scaler.fit_transform(trainX)
if testX is not None:
testX_scaled = scaler.transform(testX)
xgb_model=XGBRegressor(objective="reg:squarederror",random_state=42)
history=xgb_model.fit(trainX, trainy)
param_grid={
"learning_rate":0.01,
"max_depth" : 10,
"n_estimators": 100,
"min_child_weight": 5
}
# Predictions
predicted_train = xgb_model.predict(trainX_scaled)
predicted_test = xgb_model.predict(testX_scaled) if testX is not None else None
return predicted_train, predicted_test,history
#----------------------------------------reading file----------------------------------------------------------------------------------------
def read_csv_file(uploaded_file):
if uploaded_file is not None:
if hasattr(uploaded_file, 'data'):
return pd.read_csv(io.BytesIO(uploaded_file.data))
elif hasattr(uploaded_file, 'name'):
return pd.read_csv(uploaded_file.name)
return None
#-----------------------------------------------------------------calculate topsis score--------------------------------------------------------
def calculate_topsis_score(df):
metrics = df[['Train_MSE', 'Train_RMSE', 'Train_R2', 'Train_Corr']].dropna() # Ensure no NaN values
norm_metrics = metrics / np.sqrt((metrics ** 2).sum(axis=0))
ideal_best = pd.Series(index=norm_metrics.columns)
ideal_worst = pd.Series(index=norm_metrics.columns)
for col in ['Train_MSE', 'Train_RMSE']:
ideal_best[col] = norm_metrics[col].min()
ideal_worst[col] = norm_metrics[col].max()
for col in ['Train_R2', 'Train_Corr']:
ideal_best[col] = norm_metrics[col].max()
ideal_worst[col] = norm_metrics[col].min()
dist_to_best = np.sqrt(((norm_metrics - ideal_best) ** 2).sum(axis=1))
dist_to_worst = np.sqrt(((norm_metrics - ideal_worst) ** 2).sum(axis=1))
topsis_score = dist_to_worst / (dist_to_best + dist_to_worst)
df['TOPSIS_Score'] = np.nan
df.loc[metrics.index, 'TOPSIS_Score'] = topsis_score # Assign TOPSIS scores
return df
#--------------------------------------------------- Nested Cross validation---------------------------------------------------------------------------
def NestedKFoldCrossValidation(training_data, training_additive, testing_data, testing_additive,
training_dominance, testing_dominance, epochs,learning_rate,min_child_weight, batch_size=64,
outer_n_splits=2, inner_n_splits=2, output_file='cross_validation_results.csv',
predicted_phenotype_file='predicted_phenotype.csv', feature_selection=True):
if 'phenotypes' not in training_data.columns:
raise ValueError("Training data does not contain the 'phenotypes' column.")
training_additive = training_additive.iloc[:, 1:]
testing_additive = testing_additive.iloc[:, 1:]
training_dominance = training_dominance.iloc[:, 1:]
testing_dominance = testing_dominance.iloc[:, 1:]
# Merge training and testing data with additive and dominance components
training_data_merged = pd.concat([training_data, training_additive, training_dominance], axis=1)
testing_data_merged = pd.concat([testing_data, testing_additive, testing_dominance], axis=1)
phenotypic_info = training_data['phenotypes'].values
phenotypic_test_info = testing_data['phenotypes'].values if 'phenotypes' in testing_data.columns else None
sample_ids = testing_data.iloc[:, 0].values
training_genotypic_data_merged = training_data_merged.iloc[:, 2:].values
testing_genotypic_data_merged = testing_data_merged.iloc[:, 2:].values
if feature_selection:
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(training_genotypic_data_merged, phenotypic_info)
selector = SelectFromModel(rf, threshold="mean", prefit=True)
training_genotypic_data_merged = selector.transform(training_genotypic_data_merged)
testing_genotypic_data_merged = selector.transform(testing_genotypic_data_merged)
print(f"Selected {training_genotypic_data_merged.shape[1]} features based on importance.")
scaler = StandardScaler()
training_genotypic_data_merged = scaler.fit_transform(training_genotypic_data_merged)
testing_genotypic_data_merged = scaler.transform(testing_genotypic_data_merged)
outer_kf = KFold(n_splits=outer_n_splits)
results = []
all_predicted_phenotypes = []
def calculate_metrics(true_values, predicted_values):
mse = mean_squared_error(true_values, predicted_values)
rmse = np.sqrt(mse)
r2 = r2_score(true_values, predicted_values)
corr = pearsonr(true_values, predicted_values)[0]
return mse, rmse, r2, corr
models = [
('GRUModel', GRUModel),
('CNNModel', CNNModel),
('RFModel', RFModel),
('XGBoostModel', XGBoostModel)
]
for outer_fold, (outer_train_index, outer_test_index) in enumerate(outer_kf.split(phenotypic_info), 1):
outer_trainX = training_genotypic_data_merged[outer_train_index]
outer_trainy = phenotypic_info[outer_train_index]
outer_testX = testing_genotypic_data_merged
outer_testy = phenotypic_test_info
for model_name, model_func in models:
print(f"Running model: {model_name} for fold {outer_fold}")
if model_name in ['GRUModel', 'CNNModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy, epochs=epochs, batch_size=batch_size)
elif model_name in ['RFModel']:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy)
else:
predicted_train, predicted_test, history = model_func(outer_trainX, outer_trainy, outer_testX, outer_testy,learning_rate,min_child_weight)
mse_train, rmse_train, r2_train, corr_train = calculate_metrics(outer_trainy, predicted_train)
mse_test, rmse_test, r2_test, corr_test = calculate_metrics(outer_testy, predicted_test) if outer_testy is not None else (None, None, None, None)
results.append({
'Model': model_name,
'Fold': outer_fold,
'Train_MSE': mse_train,
'Train_RMSE': rmse_train,
'Train_R2': r2_train,
'Train_Corr': corr_train,
'Test_MSE': mse_test,
'Test_RMSE': rmse_test,
'Test_R2': r2_test,
'Test_Corr': corr_test
})
if predicted_test is not None:
predicted_test_df = pd.DataFrame({
'Sample_ID': sample_ids,
'Predicted_Phenotype': predicted_test,
'Model': model_name
})
all_predicted_phenotypes.append(predicted_test_df)
results_df = pd.DataFrame(results)
avg_results_df = results_df.groupby('Model').agg({
'Train_MSE': 'mean',
'Train_RMSE': 'mean',
'Train_R2': 'mean',
'Train_Corr': 'mean',
'Test_MSE': 'mean',
'Test_RMSE': 'mean',
'Test_R2': 'mean',
'Test_Corr': 'mean'
}).reset_index()
def calculate_topsis_score(df):
norm_df = (df.iloc[:, 1:] - df.iloc[:, 1:].min()) / (df.iloc[:, 1:].max() - df.iloc[:, 1:].min())
ideal_positive = norm_df.max(axis=0)
ideal_negative = norm_df.min(axis=0)
dist_positive = np.sqrt(((norm_df - ideal_positive) ** 2).sum(axis=1))
dist_negative = np.sqrt(((norm_df - ideal_negative) ** 2).sum(axis=1))
topsis_score = dist_negative / (dist_positive + dist_negative)
df['TOPSIS_Score'] = topsis_score
return df
avg_results_df = calculate_topsis_score(avg_results_df)
avg_results_df.to_csv(output_file, index=False)
if all_predicted_phenotypes:
predicted_all_df = pd.concat(all_predicted_phenotypes, axis=0, ignore_index=True)
predicted_all_df.to_csv(predicted_phenotype_file, index=False)
return avg_results_df, predicted_all_df if all_predicted_phenotypes else None
#--------------------------------------------------------------------Gradio interface---------------------------------------------------------------
def run_cross_validation(training_file, training_additive_file, testing_file, testing_additive_file,
training_dominance_file, testing_dominance_file,feature_selection,learning_rate,min_child_weight):
epochs = 1000
batch_size = 64
outer_n_splits = 2
inner_n_splits = 2
min_child_weight=5
learning_rate=0.001
training_data = pd.read_csv(training_file.name)
training_additive = pd.read_csv(training_additive_file.name)
testing_data = pd.read_csv(testing_file.name)
testing_additive = pd.read_csv(testing_additive_file.name)
training_dominance = pd.read_csv(training_dominance_file.name)
testing_dominance = pd.read_csv(testing_dominance_file.name)
results, predicted_phenotypes = NestedKFoldCrossValidation(
training_data=training_data,
training_additive=training_additive,
testing_data=testing_data,
testing_additive=testing_additive,
training_dominance=training_dominance,
testing_dominance=testing_dominance,
epochs=epochs,
batch_size=batch_size,
outer_n_splits=outer_n_splits,
inner_n_splits=inner_n_splits,
learning_rate=learning_rate,
min_child_weight=min_child_weight,
feature_selection=feature_selection
)
results_file = "cross_validation_results.csv"
predicted_file = "predicted_phenotype.csv"
results.to_csv(results_file, index=False)
predicted_phenotypes.to_csv(predicted_file, index=False)
return results_file, predicted_file
with gr.Blocks() as interface:
gr.Markdown("# DeepMap - An Integrated GUI for Genotype to Phenotype Prediction")
with gr.Row():
training_file = gr.File(label="Upload Training Data (CSV)")
training_additive_file = gr.File(label="Upload Training Additive Data (CSV)")
training_dominance_file = gr.File(label="Upload Training Dominance Data (CSV)")
with gr.Row():
testing_file = gr.File(label="Upload Testing Data (CSV)")
testing_additive_file = gr.File(label="Upload Testing Additive Data (CSV)")
testing_dominance_file = gr.File(label="Upload Testing Dominance Data (CSV)")
with gr.Row():
feature_selection = gr.Checkbox(label="Enable Feature Selection", value=True)
output1 = gr.File(label="Cross-Validation Results (CSV)")
output2 = gr.File(label="Predicted Phenotypes (CSV)")
submit_btn = gr.Button("Run DeepMap")
submit_btn.click(
run_cross_validation,
inputs=[
training_file, training_additive_file, testing_file,
testing_additive_file, training_dominance_file,testing_dominance_file,
feature_selection
],
outputs=[output1, output2]
)
interface.launch()