Spaces:
Sleeping
Sleeping
import torch, time | |
import clip | |
from PIL import Image | |
import lightning as L | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model, preprocess = clip.load("ViT-B/32", device=device) | |
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device) | |
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device) | |
start_time = time.time() | |
with torch.no_grad(): | |
image_features = model.encode_image(image) | |
text_features = model.encode_text(text) | |
logits_per_image, logits_per_text = model(image, text) | |
probs = logits_per_image.softmax(dim=-1).cpu().numpy() | |
end_time = time.time() | |
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]] | |
print(f"Prediction time: {end_time - start_time} seconds") |