Spaces:
Sleeping
Sleeping
Ashish Reddy
commited on
Commit
·
d00fb47
1
Parent(s):
2ea3f3e
Add application file
Browse files- .DS_Store +0 -0
- deploy.py +33 -0
- model.py +64 -0
- nanogpt_model.pth +3 -0
- requirements.txt +2 -0
- train.py +152 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
deploy.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
|
| 4 |
+
from model import Model
|
| 5 |
+
from train import encoder, decoder
|
| 6 |
+
|
| 7 |
+
# Device
|
| 8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
|
| 10 |
+
# Load model
|
| 11 |
+
model = Model().to(device)
|
| 12 |
+
model.load_state_dict(torch.load("nanogpt_model.pth", map_location=device))
|
| 13 |
+
model.eval()
|
| 14 |
+
|
| 15 |
+
# Generation function
|
| 16 |
+
def generate_text(prompt, max_tokens):
|
| 17 |
+
idx = torch.tensor(encoder(prompt), dtype=torch.long, device=device).unsqueeze(0)
|
| 18 |
+
generated = model.generate(idx, max_new_tokens=max_tokens)[0].tolist()
|
| 19 |
+
return decoder(generated)
|
| 20 |
+
|
| 21 |
+
# Gradio interface
|
| 22 |
+
iface = gr.Interface(
|
| 23 |
+
fn=generate_text,
|
| 24 |
+
inputs=[
|
| 25 |
+
gr.Textbox(lines=2, placeholder="Enter a prompt...", label="Prompt"),
|
| 26 |
+
gr.Slider(10, 500, value=200, step=10, label="Max Tokens")
|
| 27 |
+
],
|
| 28 |
+
outputs=gr.Textbox(label="Generated Output"),
|
| 29 |
+
title="🧠 NanoGPT from Scratch",
|
| 30 |
+
description="A tiny GPT model trained on Shakespeare. Try your luck by giving it a prompt!"
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
iface.launch(share=True)
|
model.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, torch.nn as nn, torch.nn.functional as F
|
| 2 |
+
|
| 3 |
+
batch_size = 64
|
| 4 |
+
max_len = 256
|
| 5 |
+
d_model = 384
|
| 6 |
+
n_layer = 6 # 6 blocks in the decoder
|
| 7 |
+
n_head = 6
|
| 8 |
+
d_q = int(d_model / n_head)
|
| 9 |
+
dropout = 0.2
|
| 10 |
+
vocab_size = 65
|
| 11 |
+
|
| 12 |
+
from block import Block
|
| 13 |
+
|
| 14 |
+
class Model(nn.Module):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.token_embedding_table = nn.Embedding(vocab_size, d_model) # Embedding matrix size: (65, 384)
|
| 18 |
+
self.positional_embedding_table = nn.Embedding(max_len, d_model) # Position matrix size: (256, 384)
|
| 19 |
+
self.blocks = nn.Sequential(*[Block(d_model, n_head) for _ in range(n_layer)])
|
| 20 |
+
self.ln = nn.LayerNorm(d_model)
|
| 21 |
+
self.unembedding_matrix_calc = nn.Linear(d_model, vocab_size)
|
| 22 |
+
|
| 23 |
+
def forward(self, idx, targets=None):
|
| 24 |
+
B, S = idx.shape
|
| 25 |
+
|
| 26 |
+
tok_emb = self.token_embedding_table(idx) # Size of embedding: (B, S, 384)
|
| 27 |
+
pos_emb = self.positional_embedding_table(torch.arange(S, device=idx.device)) # Shape: (S, 384)
|
| 28 |
+
x = tok_emb + pos_emb
|
| 29 |
+
|
| 30 |
+
x = self.blocks(x) # Pass through all 6 blocks each of all 6 heads
|
| 31 |
+
x = self.ln(x)
|
| 32 |
+
|
| 33 |
+
logits = self.unembedding_matrix_calc(x) # --> (B, S, 384) * (384, 65) --> (B, S, 65)
|
| 34 |
+
|
| 35 |
+
if targets is None:
|
| 36 |
+
loss = None
|
| 37 |
+
else:
|
| 38 |
+
B, S, V = logits.shape
|
| 39 |
+
logits = logits.view(-1, V) # (B, S, V) --> (B*S, V)
|
| 40 |
+
targets = targets.view(-1) # --> (B, S) --> (B*S)
|
| 41 |
+
loss = F.cross_entropy(logits, targets) # Handles softmax interally as well (better because it does log addition which reduces errors instead of log multi)
|
| 42 |
+
|
| 43 |
+
return logits, loss
|
| 44 |
+
|
| 45 |
+
def generate(self, idx, max_new_tokens):
|
| 46 |
+
for _ in range(max_new_tokens):
|
| 47 |
+
idx_cond = idx[:, -max_len:]
|
| 48 |
+
logits, loss = self(idx_cond)
|
| 49 |
+
logits = logits[:, -1, :]
|
| 50 |
+
probs = F.softmax(logits, dim=-1)
|
| 51 |
+
|
| 52 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 53 |
+
idx = torch.cat((idx, idx_next), dim = 1)
|
| 54 |
+
return idx
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
model = Model()
|
| 59 |
+
idx = torch.zeros((batch_size, max_len), dtype=torch.long)
|
| 60 |
+
logits, loss = model(idx, idx)
|
| 61 |
+
|
| 62 |
+
print("Input shape:", idx.shape)
|
| 63 |
+
print("Output logits shape:", logits.shape)
|
| 64 |
+
print("Calculated loss:", loss.item())
|
nanogpt_model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:04b000c9b4136c6badf5fd7c6bab668f7fec6b7ffc1838c6d85b9d4ef6a15fce
|
| 3 |
+
size 52673259
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
gradio
|
train.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, torch.nn as nn, torch.optim as optim, torch.nn.functional as F, wandb, time
|
| 2 |
+
|
| 3 |
+
batch_size = 64
|
| 4 |
+
max_len = 256
|
| 5 |
+
d_model = 384
|
| 6 |
+
n_layer = 6
|
| 7 |
+
n_head = 6
|
| 8 |
+
d_q = int(d_model / n_head)
|
| 9 |
+
dropout = 0.2
|
| 10 |
+
vocab_size = 65
|
| 11 |
+
|
| 12 |
+
max_iters = 5000
|
| 13 |
+
eval_interval = 500
|
| 14 |
+
learning_rate = 3e-4
|
| 15 |
+
eval_iters = 200
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
---- Device ----
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
if torch.cuda.is_available():
|
| 22 |
+
device = torch.device('cuda')
|
| 23 |
+
print("Using CUDA (GPU)")
|
| 24 |
+
elif torch.backends.mps.is_available() and torch.backends.mps.is_built():
|
| 25 |
+
device = torch.device('mps')
|
| 26 |
+
print("Using MPS (Apple Silicon GPU)")
|
| 27 |
+
else:
|
| 28 |
+
device = torch.device('cpu')
|
| 29 |
+
print("Using device's CPU")
|
| 30 |
+
|
| 31 |
+
"""
|
| 32 |
+
--- WandB Integration ---
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
wandb.init(
|
| 37 |
+
project="nano-model-shakesphere-training",
|
| 38 |
+
config={
|
| 39 |
+
"learning_rate": learning_rate,
|
| 40 |
+
"architecture": "decoder-only-model",
|
| 41 |
+
"dataset": "tinyshakesphere",
|
| 42 |
+
"d_model": d_model,
|
| 43 |
+
"n_layer": n_layer,
|
| 44 |
+
"n_head": n_head,
|
| 45 |
+
"max_iters": max_iters,
|
| 46 |
+
"dropout": dropout
|
| 47 |
+
}
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
with open('input.txt', 'r', encoding='utf-8') as f:
|
| 51 |
+
text = f.read()
|
| 52 |
+
|
| 53 |
+
chars = sorted(list(set(text))) # --> All unique characters within the text
|
| 54 |
+
vocab_size = len(chars) # 65 different characters in text
|
| 55 |
+
|
| 56 |
+
stoi = {}
|
| 57 |
+
itos = {}
|
| 58 |
+
|
| 59 |
+
for i in range(len(chars)):
|
| 60 |
+
stoi[chars[i]] = i # Convert strings to ints
|
| 61 |
+
itos[i] = chars[i] # Convert ints to strings
|
| 62 |
+
|
| 63 |
+
# Take a string, and output its characters indices in a list
|
| 64 |
+
def encoder(s):
|
| 65 |
+
res = []
|
| 66 |
+
for char in s:
|
| 67 |
+
res.append(stoi[char])
|
| 68 |
+
return res
|
| 69 |
+
|
| 70 |
+
# Take a list of indices and output a string
|
| 71 |
+
def decoder(l):
|
| 72 |
+
res = ""
|
| 73 |
+
for i in l:
|
| 74 |
+
res += itos[i]
|
| 75 |
+
return res
|
| 76 |
+
|
| 77 |
+
data = torch.tensor(encoder(text), dtype=torch.long) # --> Same shape as length, i.e., number of characters
|
| 78 |
+
|
| 79 |
+
n = int(0.9 * len(data))
|
| 80 |
+
train_data = data[:n] # 90% of text
|
| 81 |
+
val_data = data[n:] # 10% of text
|
| 82 |
+
|
| 83 |
+
def get_batch(split):
|
| 84 |
+
if split.lower() == 'train':
|
| 85 |
+
data = train_data
|
| 86 |
+
else:
|
| 87 |
+
data = val_data
|
| 88 |
+
|
| 89 |
+
ix = torch.randint(len(data)-max_len, (batch_size,)) # Generate batch_size=64 random numbers from 0 to len(data)-max_len
|
| 90 |
+
|
| 91 |
+
x = torch.stack([data[i:i+max_len] for i in ix]) # Generates 250 ids from that random number and stacks batch_size by rows, so shape[64, 256]
|
| 92 |
+
y = torch.stack([data[i+1:i+max_len+1] for i in ix]) # This is done in order to test teh real y with the later predicted y by the model using cross entropy and update weights
|
| 93 |
+
|
| 94 |
+
return x.to(device), y.to(device)
|
| 95 |
+
|
| 96 |
+
"""
|
| 97 |
+
--- Model Training ---
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
|
| 102 |
+
from model import Model
|
| 103 |
+
|
| 104 |
+
model = Model()
|
| 105 |
+
m = model.to(device)
|
| 106 |
+
|
| 107 |
+
optimizer = optim.AdamW(
|
| 108 |
+
model.parameters(),
|
| 109 |
+
lr=learning_rate
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
@torch.no_grad
|
| 113 |
+
def estimate_loss():
|
| 114 |
+
out = {}
|
| 115 |
+
model.eval()
|
| 116 |
+
for split in ['train', 'val']:
|
| 117 |
+
losses = torch.zeros(eval_iters)
|
| 118 |
+
for k in range(eval_iters):
|
| 119 |
+
X, Y = get_batch(split)
|
| 120 |
+
logits, loss = model(X, Y)
|
| 121 |
+
losses[k] = loss.item()
|
| 122 |
+
out[split] = losses.mean()
|
| 123 |
+
model.train()
|
| 124 |
+
return out
|
| 125 |
+
|
| 126 |
+
for iter in range(max_iters):
|
| 127 |
+
if iter % eval_interval == 0 or iter == max_iters - 1:
|
| 128 |
+
losses = estimate_loss()
|
| 129 |
+
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
| 130 |
+
|
| 131 |
+
wandb.log({
|
| 132 |
+
"iter": iter,
|
| 133 |
+
"train/loss": losses['train'],
|
| 134 |
+
"val/loss": losses['val'],
|
| 135 |
+
"lr": learning_rate
|
| 136 |
+
})
|
| 137 |
+
iter_start = time.time()
|
| 138 |
+
xb, yb = get_batch("train")
|
| 139 |
+
logits, loss = model(xb, yb)
|
| 140 |
+
optimizer.zero_grad(set_to_none=True) # Required for new resetting as after iter, new set of batches will come
|
| 141 |
+
loss.backward() # Required for back passing, it gives you the amount of steepness and gradient
|
| 142 |
+
optimizer.step() # Required for actually nudging in that given direction (Taking a plausible value of lr right now but it influences a lot)
|
| 143 |
+
|
| 144 |
+
iter_time = time.time() - iter_start
|
| 145 |
+
print(f"Iteration {iter} completed in {iter_time:.2f} seconds")
|
| 146 |
+
wandb.log({"iter_time": iter_time})
|
| 147 |
+
|
| 148 |
+
wandb.finish()
|
| 149 |
+
|
| 150 |
+
print("Training finished. Saving model state...")
|
| 151 |
+
torch.save(model.state_dict(), 'nanogpt_model.pth')
|
| 152 |
+
print("Model saved to nanogpt_model.pth")
|