Update tools/predict_tool.py
Browse files- tools/predict_tool.py +4 -30
tools/predict_tool.py
CHANGED
|
@@ -12,16 +12,7 @@ from utils.tracing import Tracer
|
|
| 12 |
|
| 13 |
class PredictTool:
|
| 14 |
"""
|
| 15 |
-
Loads a sklearn-compatible tabular model
|
| 16 |
-
Hugging Face repo and runs batch predictions on a DataFrame.
|
| 17 |
-
Expects:
|
| 18 |
-
- model.pkl
|
| 19 |
-
- feature_metadata.json (optional but recommended)
|
| 20 |
-
{
|
| 21 |
-
"feature_order": ["col1","col2",...],
|
| 22 |
-
"prediction_column": "prediction",
|
| 23 |
-
"task": "classification" | "regression"
|
| 24 |
-
}
|
| 25 |
"""
|
| 26 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 27 |
self.cfg = cfg
|
|
@@ -35,23 +26,14 @@ class PredictTool:
|
|
| 35 |
if self._model is not None:
|
| 36 |
return
|
| 37 |
|
| 38 |
-
token = os.getenv("HF_TOKEN")
|
| 39 |
repo = self.cfg.hf_model_repo
|
| 40 |
|
| 41 |
-
model_path = hf_hub_download(
|
| 42 |
-
repo_id=repo,
|
| 43 |
-
filename="model.pkl",
|
| 44 |
-
token=token
|
| 45 |
-
)
|
| 46 |
self._model = joblib.load(model_path)
|
| 47 |
|
| 48 |
-
# feature metadata is optional; handle gracefully
|
| 49 |
try:
|
| 50 |
-
meta_path = hf_hub_download(
|
| 51 |
-
repo_id=repo,
|
| 52 |
-
filename="feature_metadata.json",
|
| 53 |
-
token=token
|
| 54 |
-
)
|
| 55 |
with open(meta_path, "r", encoding="utf-8") as f:
|
| 56 |
self._feature_meta = json.load(f) or {}
|
| 57 |
except Exception:
|
|
@@ -62,18 +44,13 @@ class PredictTool:
|
|
| 62 |
|
| 63 |
def _select_features(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 64 |
if self._feature_order:
|
| 65 |
-
# keep only features in the trained order, ignore extras
|
| 66 |
missing = [c for c in self._feature_order if c not in df.columns]
|
| 67 |
if missing:
|
| 68 |
raise ValueError(f"Missing required features for model: {missing}")
|
| 69 |
return df[self._feature_order].copy()
|
| 70 |
-
# default: use everything present
|
| 71 |
return df.copy()
|
| 72 |
|
| 73 |
def run(self, df: Optional[pd.DataFrame]) -> pd.DataFrame:
|
| 74 |
-
"""
|
| 75 |
-
If df is None, returns an empty DataFrame.
|
| 76 |
-
"""
|
| 77 |
self._ensure_loaded()
|
| 78 |
if df is None or len(df) == 0:
|
| 79 |
return pd.DataFrame()
|
|
@@ -81,14 +58,11 @@ class PredictTool:
|
|
| 81 |
X = self._select_features(df)
|
| 82 |
model = self._model
|
| 83 |
|
| 84 |
-
# classification with probabilities preferred
|
| 85 |
if hasattr(model, "predict_proba"):
|
| 86 |
preds = model.predict_proba(X)[:, -1]
|
| 87 |
elif hasattr(model, "decision_function"):
|
| 88 |
-
# fallback: map decision function to a score
|
| 89 |
import numpy as np
|
| 90 |
raw = model.decision_function(X)
|
| 91 |
-
# simple sigmoid to scale-ish if binary
|
| 92 |
preds = 1 / (1 + np.exp(-raw))
|
| 93 |
else:
|
| 94 |
preds = model.predict(X)
|
|
|
|
| 12 |
|
| 13 |
class PredictTool:
|
| 14 |
"""
|
| 15 |
+
Loads a sklearn-compatible tabular model from a HF repo and runs predictions.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
def __init__(self, cfg: AppConfig, tracer: Tracer):
|
| 18 |
self.cfg = cfg
|
|
|
|
| 26 |
if self._model is not None:
|
| 27 |
return
|
| 28 |
|
| 29 |
+
token = os.getenv("HF_TOKEN")
|
| 30 |
repo = self.cfg.hf_model_repo
|
| 31 |
|
| 32 |
+
model_path = hf_hub_download(repo_id=repo, filename="model.pkl", token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
self._model = joblib.load(model_path)
|
| 34 |
|
|
|
|
| 35 |
try:
|
| 36 |
+
meta_path = hf_hub_download(repo_id=repo, filename="feature_metadata.json", token=token)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
with open(meta_path, "r", encoding="utf-8") as f:
|
| 38 |
self._feature_meta = json.load(f) or {}
|
| 39 |
except Exception:
|
|
|
|
| 44 |
|
| 45 |
def _select_features(self, df: pd.DataFrame) -> pd.DataFrame:
|
| 46 |
if self._feature_order:
|
|
|
|
| 47 |
missing = [c for c in self._feature_order if c not in df.columns]
|
| 48 |
if missing:
|
| 49 |
raise ValueError(f"Missing required features for model: {missing}")
|
| 50 |
return df[self._feature_order].copy()
|
|
|
|
| 51 |
return df.copy()
|
| 52 |
|
| 53 |
def run(self, df: Optional[pd.DataFrame]) -> pd.DataFrame:
|
|
|
|
|
|
|
|
|
|
| 54 |
self._ensure_loaded()
|
| 55 |
if df is None or len(df) == 0:
|
| 56 |
return pd.DataFrame()
|
|
|
|
| 58 |
X = self._select_features(df)
|
| 59 |
model = self._model
|
| 60 |
|
|
|
|
| 61 |
if hasattr(model, "predict_proba"):
|
| 62 |
preds = model.predict_proba(X)[:, -1]
|
| 63 |
elif hasattr(model, "decision_function"):
|
|
|
|
| 64 |
import numpy as np
|
| 65 |
raw = model.decision_function(X)
|
|
|
|
| 66 |
preds = 1 / (1 + np.exp(-raw))
|
| 67 |
else:
|
| 68 |
preds = model.predict(X)
|