|
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module |
|
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm |
|
|
|
""" |
|
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch) |
|
""" |
|
|
|
|
|
class Backbone(Module): |
|
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True): |
|
super(Backbone, self).__init__() |
|
assert input_size in [112, 224], "input_size should be 112 or 224" |
|
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" |
|
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se" |
|
blocks = get_blocks(num_layers) |
|
if mode == 'ir': |
|
unit_module = bottleneck_IR |
|
elif mode == 'ir_se': |
|
unit_module = bottleneck_IR_SE |
|
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False), |
|
BatchNorm2d(64), |
|
PReLU(64)) |
|
if input_size == 112: |
|
self.output_layer = Sequential(BatchNorm2d(512), |
|
Dropout(drop_ratio), |
|
Flatten(), |
|
Linear(512 * 7 * 7, 512), |
|
BatchNorm1d(512, affine=affine)) |
|
else: |
|
self.output_layer = Sequential(BatchNorm2d(512), |
|
Dropout(drop_ratio), |
|
Flatten(), |
|
Linear(512 * 14 * 14, 512), |
|
BatchNorm1d(512, affine=affine)) |
|
|
|
modules = [] |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append(unit_module(bottleneck.in_channel, |
|
bottleneck.depth, |
|
bottleneck.stride)) |
|
self.body = Sequential(*modules) |
|
|
|
def forward(self, x): |
|
x = self.input_layer(x) |
|
x = self.body(x) |
|
x = self.output_layer(x) |
|
return l2_norm(x) |
|
|