Aging_MouthReplace / dlibs /docs /dlib /dnn /loss_abstract.h.html
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library. See http://dlib.net for updates. --><head><title>dlib C++ Library - loss_abstract.h</title></head><body bgcolor='white'><pre>
<font color='#009900'>// Copyright (C) 2015 Davis E. King (davis@dlib.net)
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license.
</font><font color='#0000FF'>#undef</font> DLIB_DNn_LOSS_ABSTRACT_H_
<font color='#0000FF'>#ifdef</font> DLIB_DNn_LOSS_ABSTRACT_H_
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='core_abstract.h.html'>core_abstract.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../image_processing/full_object_detection_abstract.h.html'>../image_processing/full_object_detection_abstract.h</a>"
<font color='#0000FF'>namespace</font> dlib
<b>{</b>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
A loss layer is the final layer in a deep neural network. It computes the
task loss. That is, it computes a number that tells us how well the
network is performing on some task, such as predicting a binary label.
You can use one of the loss layers that comes with dlib (defined below).
But importantly, you are able to define your own loss layers to suit your
needs. You do this by creating a class that defines an interface matching
the one described by this EXAMPLE_LOSS_LAYER_ class. Note that there is no
dlib::EXAMPLE_LOSS_LAYER_ type. It is shown here purely to document the
interface that a loss layer must implement.
A loss layer can optionally provide a to_label() method that converts the
output of a network into a user defined type. If to_label() is not
provided then the operator() methods of add_loss_layer will not be
available, but otherwise everything will function as normal.
Finally, note that there are two broad flavors of loss layer, supervised
and unsupervised. The EXAMPLE_LOSS_LAYER_ as shown here is a supervised
layer. To make an unsupervised loss you simply leave out the
training_label_type typedef and the truth iterator argument to
compute_loss_value_and_gradient().
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#009900'>// In most cases training_label_type and output_label_type will be the same type.
</font> <font color='#0000FF'>typedef</font> whatever_type_you_use_for_training_labels training_label_type;
<font color='#0000FF'>typedef</font> whatever_type_you_use_for_outout_labels output_label_type;
<b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- EXAMPLE_LOSS_LAYER_ objects are default constructable.
!*/</font>
<b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- EXAMPLE_LOSS_LAYER_ objects are copy constructable.
!*/</font>
<font color='#009900'>// Implementing to_label() is optional.
</font> <font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- SUBNET implements the SUBNET interface defined at the top of
layers_abstract.h.
- input_tensor was given as input to the network sub and the outputs are
now visible in layer&lt;i&gt;(sub).get_output(), for all valid i.
- input_tensor.num_samples() &gt; 0
- input_tensor.num_samples()%sub.sample_expansion_factor() == 0.
- iter == an iterator pointing to the beginning of a range of
input_tensor.num_samples()/sub.sample_expansion_factor() elements. Moreover,
they must be output_label_type elements.
ensures
- Converts the output of the provided network to output_label_type objects and
stores the results into the range indicated by iter. In particular, for
all valid i, it will be the case that:
*(iter+i/sub.sample_expansion_factor()) is populated based on the output of
sub and corresponds to the ith sample in input_tensor.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- SUBNET implements the SUBNET interface defined at the top of
layers_abstract.h.
- input_tensor was given as input to the network sub and the outputs are
now visible in layer&lt;i&gt;(sub).get_output(), for all valid i.
- input_tensor.num_samples() &gt; 0
- input_tensor.num_samples()%sub.sample_expansion_factor() == 0.
- for all valid i:
- layer&lt;i&gt;(sub).get_gradient_input() has the same dimensions as
layer&lt;i&gt;(sub).get_output().
- layer&lt;i&gt;(sub).get_gradient_input() contains all zeros (i.e.
initially, all input gradients are 0).
- truth == an iterator pointing to the beginning of a range of
input_tensor.num_samples()/sub.sample_expansion_factor() elements. Moreover,
they must be training_label_type elements.
- for all valid i:
- *(truth+i/sub.sample_expansion_factor()) is the label of the ith sample in
input_tensor.
ensures
- This function computes a loss function that describes how well the output
of sub matches the expected labels given by truth. Let's write the loss
function as L(input_tensor, truth, sub).
- Then compute_loss_value_and_gradient() computes the gradient of L() with
respect to the outputs in sub. Specifically, compute_loss_value_and_gradient()
assigns the gradients into sub by performing the following tensor
assignments, for all valid i:
- layer&lt;i&gt;(sub).get_gradient_input() = the gradient of
L(input_tensor,truth,sub) with respect to layer&lt;i&gt;(sub).get_output().
Note that, since get_gradient_input() is zero initialized, you don't
have to write gradient information to layers that have a zero
loss gradient.
- returns L(input_tensor,truth,sub)
!*/</font>
<b>}</b>;
std::ostream<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font><font face='Lucida Console'>(</font>std::ostream<font color='#5555FF'>&amp;</font> out, <font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
print a string describing this layer.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_xml'></a>to_xml</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
This function is optional, but required if you want to print your networks with
net_to_xml(). Therefore, to_xml() prints a layer as XML.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&amp;</font> item, std::istream<font color='#5555FF'>&amp;</font> in<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
provides serialization support
!*/</font>
<font color='#009900'>// For each loss layer you define, always define an add_loss_layer template so that
</font> <font color='#009900'>// layers can be easily composed. Moreover, the convention is that the layer class
</font> <font color='#009900'>// ends with an _ while the add_loss_layer template has the same name but without the
</font> <font color='#009900'>// trailing _.
</font> <font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> EXAMPLE_LOSS_LAYER <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>EXAMPLE_LOSS_LAYER_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font><font color='#009900'>// ----------------------------------------------------------------------------------------
</font><font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_binary_hinge_'></a>loss_binary_hinge_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the hinge loss, which is
appropriate for binary classification problems. Therefore, the possible
labels when using this loss are +1 and -1. Moreover, it will cause the
network to produce outputs &gt; 0 when predicting a member of the +1 class and
values &lt; 0 otherwise.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the raw score for each classified object. If the score
is &gt; 0 then the classifier is predicting the +1 class, otherwise it is
predicting the -1 class.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all values pointed to by truth are +1 or -1.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_binary_hinge <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_binary_hinge_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_binary_log_'></a>loss_binary_log_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the log loss, which is
appropriate for binary classification problems. Therefore, there are two possible
classes of labels: positive (&gt; 0) and negative (&lt; 0) when using this loss.
The absolute value of the label represents its weight. Putting a larger weight
on a sample increases the importance of getting its prediction correct during
training. A good rule of thumb is to use weights with absolute value 1 unless
you have a very unbalanced training dataset, in that case, give larger weight
to the class with less training examples.
This loss will cause the network to produce outputs &gt; 0 when predicting a
member of the positive class and values &lt; 0 otherwise.
To be more specific, this object contains a sigmoid layer followed by a
cross-entropy layer.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the raw score for each classified object. If the score
is &gt; 0 then the classifier is predicting the +1 class, otherwise it is
predicting the -1 class.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all values pointed to by truth are non-zero. Nominally they should be +1 or -1,
each indicating the desired class label.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_binary_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_binary_log_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_'></a>loss_multiclass_log_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic
regression loss (e.g. negative log-likelihood loss), which is appropriate
for multiclass classification problems. This means that the possible
labels when using this loss are integers &gt;= 0.
Moreover, if after training you were to replace the loss layer of the
network with a softmax layer, the network outputs would give the
probabilities of each class assignment. That is, if you have K classes
then the network should output tensors with the tensor::k()'th dimension
equal to K. Applying softmax to these K values gives the probabilities of
each class. The index into that K dimensional vector with the highest
probability is the predicted class label.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k().
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all values pointed to by truth are &lt; sub.get_output().k()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multiclass_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multiclass_log_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> label_type<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>struct</font> <b><a name='weighted_label'></a>weighted_label</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object represents the truth label of a single sample, together with
an associated weight (the higher the weight, the more emphasis the
corresponding sample is given during the training).
For technical reasons, it is defined in misc.h
This object is used in the following loss layers:
- loss_multiclass_log_weighted_ with unsigned long as label_type
- loss_multiclass_log_per_pixel_weighted_ with uint16_t as label_type,
since, in semantic segmentation, 65536 classes ought to be enough for
anybody.
!*/</font>
<b><a name='weighted_label'></a>weighted_label</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>
<b>{</b><b>}</b>
<b><a name='weighted_label'></a>weighted_label</b><font face='Lucida Console'>(</font>label_type label, <font color='#0000FF'><u>float</u></font> weight <font color='#5555FF'>=</font> <font color='#979000'>1.f</font><font face='Lucida Console'>)</font>
: label<font face='Lucida Console'>(</font>label<font face='Lucida Console'>)</font>, weight<font face='Lucida Console'>(</font>weight<font face='Lucida Console'>)</font>
<b>{</b><b>}</b>
<font color='#009900'>// The ground truth label
</font> label_type label<b>{</b><b>}</b>;
<font color='#009900'>// The weight of the corresponding sample
</font> <font color='#0000FF'><u>float</u></font> weight <font color='#5555FF'>=</font> <font color='#979000'>1.f</font>;
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_weighted_'></a>loss_multiclass_log_weighted_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic
regression loss (e.g. negative log-likelihood loss), which is appropriate
for multiclass classification problems. It is basically just like the
loss_multiclass_log except that it lets you define per-sample weights,
which might be useful e.g. if you want to emphasize rare classes while
training. If the classification problem is difficult, a flat weight
structure may lead the network to always predict the most common label,
in particular if the degree of imbalance is high. To emphasize a certain
class or classes, simply increase the weights of the corresponding samples,
relative to the weights of other pixels.
Note that if you set all the weights equals to 1, then you get
loss_multiclass_log_ as a special case.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> dlib::weighted_label<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> weighted_label;
<font color='#0000FF'>typedef</font> weighted_label training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k().
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all values pointed to by truth are &lt; sub.get_output().k()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multiclass_log_weighted <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multiclass_log_weighted_, SUBNET<font color='#5555FF'>&gt;</font>;<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements a collection of
multiclass classifiers. An example will make its use clear. So suppose,
for example, that you want to make something that takes a picture of a
vehicle and answers the following questions:
- What type of vehicle is it? A sedan or a truck?
- What color is it? red, green, blue, gray, or black?
You need two separate multi-class classifiers to do this. One to decide
the type of vehicle, and another to decide the color. The
loss_multimulticlass_log_ allows you to pack these two classifiers into one
neural network. This means that when you use the network to process an
image it will output 2 labels for each image, the type label and the color
label.
To create a loss_multimulticlass_log_ for the above case you would
construct it as follows:
std::map&lt;std::string,std::vector&lt;std::string&gt;&gt; labels;
labels["type"] = {"sedan", "truck"};
labels["color"] = {"red", "green", "blue", "gray", "black"};
loss_multimulticlass_log_ myloss(labels);
Then you could use myloss with a network object and train it to do this
task. More generally, you can use any number of classifiers and labels
when using this object. Finally, each of the classifiers uses a standard
multi-class logistic regression loss.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #number_of_labels() == 0
- #get_labels().size() == 0
!*/</font>
<b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::map<font color='#5555FF'>&lt;</font>std::string,std::vector<font color='#5555FF'>&lt;</font>std::string<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> labels
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- Each vector in labels must contain at least 2 strings. I.e. each
classifier must have at least two possible labels.
ensures
- #number_of_labels() == the total number of strings in all the
std::vectors in labels.
- #number_of_classifiers() == labels.size()
- #get_labels() == labels
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='number_of_labels'></a>number_of_labels</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the total number of labels known to this loss. This is the count of
all the labels in each classifier.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='number_of_classifiers'></a>number_of_classifiers</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of classifiers defined by this loss.
!*/</font>
std::map<font color='#5555FF'>&lt;</font>std::string,std::vector<font color='#5555FF'>&lt;</font>std::string<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> <b><a name='get_labels'></a>get_labels</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the names of the classifiers and labels used by this loss. In
particular, if the returned object is L then:
- L[CLASS] == the set of labels used by the classifier CLASS.
- L.size() == number_of_classifiers()
- The count of strings in the vectors in L == number_of_labels()
!*/</font>
<font color='#0000FF'>class</font> <b><a name='classifier_output'></a>classifier_output</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object stores the predictions from one of the classifiers in
loss_multimulticlass_log_. It allows you to find out the most likely
string label predicted by that classifier, as well as get the class
conditional probability of any of the classes in the classifier.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='classifier_output'></a>classifier_output</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #num_classes() == 0
!*/</font>
<font color='#0000FF'><u>size_t</u></font> <b><a name='num_classes'></a>num_classes</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of possible classes output by this classifier.
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='probability_of_class'></a>probability_of_class</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>size_t</u></font> i
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- i &lt; num_classes()
ensures
- returns the probability that the true class has a label of label(i).
- The sum of probability_of_class(j) for j in the range [0, num_classes()) is always 1.
!*/</font>
<font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font> <b><a name='label'></a>label</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>size_t</u></font> i
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- i &lt; num_classes()
ensures
- returns the string label for the ith class.
!*/</font>
<b><a name='operator'></a>operator</b> std::<b><a name='string'></a>string</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- num_classes() != 0
ensures
- returns the string label for the most probable class.
!*/</font>
<font color='#0000FF'>friend</font> std::ostream<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> <font face='Lucida Console'>(</font>std::ostream<font color='#5555FF'>&amp;</font> out, <font color='#0000FF'>const</font> classifier_output<font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- num_classes() != 0
ensures
- prints the most probable class label to out.
!*/</font>
<b>}</b>;
<font color='#009900'>// Both training_label_type and output_label_type should always have sizes equal to
</font> <font color='#009900'>// number_of_classifiers(). That is, the std::map should have an entry for every
</font> <font color='#009900'>// classifier known to this loss.
</font> <font color='#0000FF'>typedef</font> std::map<font color='#5555FF'>&lt;</font>std::string,std::string<font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> std::map<font color='#5555FF'>&lt;</font>std::string,classifier_output<font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- number_of_labels() != 0
- sub.get_output().k() == number_of_labels()
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- number_of_labels() != 0
- sub.get_output().k() == number_of_labels()
It should be noted that the last layer in your network should usually
be an fc layer. If so, you can satisfy this requirement of k() being
number_of_labels() by calling set_num_outputs() prior to training your
network like so:
your_network.subnet().layer_details().set_num_outputs(your_network.loss_details().number_of_labels());
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- All the std::maps pointed to by truth contain entries for all the
classifiers known to this loss. That is, it must be valid to call
truth[i][classifier] for any of the classifiers known to this loss. To
say this another way, all the training samples must contain labels for
each of the classifiers defined by this loss.
To really belabor this, this also means that truth[i].size() ==
get_labels().size() and that both truth[i] and get_labels() have the same
set of key strings. It also means that the value strings in truth[i]
must be strings known to the loss, i.e. they are valid labels according
to get_labels().
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multimulticlass_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multimulticlass_log_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// Allow comparison between classifier_outputs and std::string to check if the
</font> <font color='#009900'>// predicted class is a particular string.
</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>bool</u></font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font> lhs, <font color='#0000FF'>const</font> loss_multimulticlass_log_::classifier_output<font color='#5555FF'>&amp;</font> rhs<font face='Lucida Console'>)</font>
<b>{</b> <font color='#0000FF'>return</font> lhs <font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font color='#0000FF'>static_cast</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>rhs<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#0000FF'>inline</font> <font color='#0000FF'><u>bool</u></font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> loss_multimulticlass_log_::classifier_output<font color='#5555FF'>&amp;</font> lhs, <font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font> rhs<font face='Lucida Console'>)</font>
<b>{</b> <font color='#0000FF'>return</font> rhs <font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font color='#0000FF'>static_cast</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>lhs<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multibinary_log_'></a>loss_multibinary_log_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements a collection of
binary classifiers using the log loss, which is appropriate for
binary classification problems where each sample can belong to zero
or more categories. Therefore, there are two possible classes of labels:
positive (&gt; 0) and negative (&lt; 0) when using this loss.
The absolute value of the label represents its weight. Putting a larger
weight on a sample increases its importance of getting its prediction
correct during training. A good rule of thumb is to use weights with
absolute value 1 unless you have a very unbalanced training dataset,
in that case, give larger weight to the class with less training examples.
This loss will cause the network to produce outputs &gt; 0 when predicting a
member of the positive classes and values &lt; 0 otherwise.
To be more specific, this object contains a sigmoid layer followed by a
cross-entropy layer.
An example will make its use clear. So suppose, for example, that you want
to make a classifier for cats and dogs, but what happens if they both
appear in one image? Or none of them? This layer allows you to handle
those use cases by using the following labels:
- std::vector&lt;float&gt; dog_label = {1.f, -1.f};
- std::vector&lt;float&gt; cat_label = {-1.f , 1.f};
- std::vector&lt;float&gt; both_label = {1.f, 1.f};
- std::vector&lt;float&gt; none_label = {-1.f, -1.f};
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output labels are the raw scores for each classified object. If a score
is &gt; 0 then the classifier is predicting the +1 class for that category, otherwise
it is predicting the -1 class.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- truth points to training_label_type elements, each of size sub.get_output.k().
The elements of each truth training_label_type instance are nominally +1 or -1,
each representing a binary class label.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multibinary_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multibinary_log_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font><font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>enum</font> <font color='#0000FF'>class</font> <b><a name='use_image_pyramid'></a>use_image_pyramid</b> : uint8_t
<b>{</b>
no,
yes
<b>}</b>;
<font color='#0000FF'>struct</font> <b><a name='mmod_options'></a>mmod_options</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object contains all the parameters that control the behavior of loss_mmod_.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>struct</font> <b><a name='detector_window_details'></a>detector_window_details</b>
<b>{</b>
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> w, <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> h<font face='Lucida Console'>)</font> : width<font face='Lucida Console'>(</font>w<font face='Lucida Console'>)</font>, height<font face='Lucida Console'>(</font>h<font face='Lucida Console'>)</font> <b>{</b><b>}</b>
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> w, <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> h, <font color='#0000FF'>const</font> std::string<font color='#5555FF'>&amp;</font> l<font face='Lucida Console'>)</font> : width<font face='Lucida Console'>(</font>w<font face='Lucida Console'>)</font>, height<font face='Lucida Console'>(</font>h<font face='Lucida Console'>)</font>, label<font face='Lucida Console'>(</font>l<font face='Lucida Console'>)</font> <b>{</b><b>}</b>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> width <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> height <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
std::string label;
<font color='#0000FF'>friend</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> detector_window_details<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#0000FF'>friend</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>detector_window_details<font color='#5555FF'>&amp;</font> item, std::istream<font color='#5555FF'>&amp;</font> in<font face='Lucida Console'>)</font>;
<b>}</b>;
<b><a name='mmod_options'></a>mmod_options</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<font color='#009900'>// This kind of object detector is a sliding window detector. The detector_windows
</font> <font color='#009900'>// field determines how many sliding windows we will use and what the shape of each
</font> <font color='#009900'>// window is. It also determines the output label applied to each detection
</font> <font color='#009900'>// identified by each window. Since you will usually use the MMOD loss with an
</font> <font color='#009900'>// image pyramid, the detector sizes also determine the size of the smallest object
</font> <font color='#009900'>// you can detect.
</font> std::vector<font color='#5555FF'>&lt;</font>detector_window_details<font color='#5555FF'>&gt;</font> detector_windows;
<font color='#009900'>// These parameters control how we penalize different kinds of mistakes. See
</font> <font color='#009900'>// Max-Margin Object Detection by Davis E. King (http://arxiv.org/abs/1502.00046)
</font> <font color='#009900'>// for further details.
</font> <font color='#0000FF'><u>double</u></font> loss_per_false_alarm <font color='#5555FF'>=</font> <font color='#979000'>1</font>;
<font color='#0000FF'><u>double</u></font> loss_per_missed_target <font color='#5555FF'>=</font> <font color='#979000'>1</font>;
<font color='#009900'>// A detection must have an intersection-over-union value greater than this for us
</font> <font color='#009900'>// to consider it a match against a ground truth box.
</font> <font color='#0000FF'><u>double</u></font> truth_match_iou_threshold <font color='#5555FF'>=</font> <font color='#979000'>0.5</font>;
<font color='#009900'>// When doing non-max suppression, we use overlaps_nms to decide if a box overlaps
</font> <font color='#009900'>// an already output detection and should therefore be thrown out.
</font> test_box_overlap overlaps_nms <font color='#5555FF'>=</font> <b><a name='test_box_overlap'></a>test_box_overlap</b><font face='Lucida Console'>(</font><font color='#979000'>0.4</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// Any mmod_rect in the training data that has its ignore field set to true defines
</font> <font color='#009900'>// an "ignore zone" in an image. Any detection from that area is totally ignored
</font> <font color='#009900'>// by the optimizer. Therefore, this overlaps_ignore field defines how we decide
</font> <font color='#009900'>// if a box falls into an ignore zone. You use these ignore zones if there are
</font> <font color='#009900'>// objects in your dataset that you are unsure if you want to detect or otherwise
</font> <font color='#009900'>// don't care if the detector gets them or not.
</font> test_box_overlap overlaps_ignore;
<font color='#009900'>// Usually the detector would be scale-invariant, and used with an image pyramid.
</font> <font color='#009900'>// However, sometimes scale-invariance may not be desired.
</font> use_image_pyramid assume_image_pyramid <font color='#5555FF'>=</font> use_image_pyramid::yes;
<font color='#009900'>// By default, the mmod loss doesn't train any bounding box regression model. But
</font> <font color='#009900'>// if you set use_bounding_box_regression == true then it expects the network to
</font> <font color='#009900'>// output a tensor with detector_windows.size()*5 channels rather than just
</font> <font color='#009900'>// detector_windows.size() channels. The 4 extra channels per window are trained
</font> <font color='#009900'>// to give a bounding box regression output that improves the positioning of the
</font> <font color='#009900'>// output detection box.
</font> <font color='#0000FF'><u>bool</u></font> use_bounding_box_regression <font color='#5555FF'>=</font> <font color='#979000'>false</font>;
<font color='#009900'>// When using bounding box regression, bbr_lambda determines how much you care
</font> <font color='#009900'>// about getting the bounding box shape correct vs just getting the detector to
</font> <font color='#009900'>// find objects. That is, the objective function being optimized is
</font> <font color='#009900'>// basic_mmod_loss + bbr_lambda*bounding_box_regression_loss. So setting
</font> <font color='#009900'>// bbr_lambda to a larger value will cause the overall loss to care more about
</font> <font color='#009900'>// getting the bounding box shape correct.
</font> <font color='#0000FF'><u>double</u></font> bbr_lambda <font color='#5555FF'>=</font> <font color='#979000'>100</font>;
<font color='#009900'>// Tell the loss not to print warnings about impossible labels. You should think very hard
</font> <font color='#009900'>// before turning this off as it's very often telling you something is really wrong with
</font> <font color='#009900'>// your training data.
</font> <font color='#0000FF'><u>bool</u></font> be_quiet <font color='#5555FF'>=</font> <font color='#979000'>false</font>;
<b><a name='mmod_options'></a>mmod_options</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'>&lt;</font>std::vector<font color='#5555FF'>&lt;</font>mmod_rect<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> boxes,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> target_size,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> min_target_size,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> min_detector_window_overlap_iou <font color='#5555FF'>=</font> <font color='#979000'>0.75</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- 0 &lt; min_target_size &lt;= target_size
- 0.5 &lt; min_detector_window_overlap_iou &lt; 1
ensures
- use_image_pyramid_ == use_image_pyramid::yes
- This function should be used when scale-invariance is desired, and
input_rgb_image_pyramid is therefore used as the input layer.
- This function tries to automatically set the MMOD options to reasonable
values, assuming you have a training dataset of boxes.size() images, where
the ith image contains objects boxes[i] you want to detect.
- The most important thing this function does is decide what detector
windows should be used. This is done by finding a set of detector
windows that are sized such that:
- When slid over an image pyramid, each box in boxes will have an
intersection-over-union with one of the detector windows of at least
min_detector_window_overlap_iou. That is, we will make sure that
each box in boxes could potentially be detected by one of the
detector windows. This essentially comes down to picking detector
windows with aspect ratios similar to the aspect ratios in boxes.
Note that we also make sure that each box can be detected by a window
with the same label. For example, if all the boxes had the same
aspect ratio but there were 4 different labels used in boxes then
there would be 4 resulting detector windows, one for each label.
- The longest edge of each detector window is target_size pixels in
length, unless the window's shortest side would be less than
min_target_size pixels in length. In this case the shortest side
will be set to min_target_size length, and the other side sized to
preserve the aspect ratio of the window.
This means that target_size and min_target_size control the size of the
detector windows, while the aspect ratios of the detector windows are
automatically determined by the contents of boxes. It should also be
emphasized that the detector isn't going to be able to detect objects
smaller than any of the detector windows. So consider that when setting
these sizes.
- This function will also set the overlaps_nms tester to the most
restrictive tester that doesn't reject anything in boxes.
!*/</font>
<b><a name='mmod_options'></a>mmod_options</b> <font face='Lucida Console'>(</font>
use_image_pyramid use_image_pyramid,
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'>&lt;</font>std::vector<font color='#5555FF'>&lt;</font>mmod_rect<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> boxes,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> min_detector_window_overlap_iou <font color='#5555FF'>=</font> <font color='#979000'>0.75</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- use_image_pyramid == use_image_pyramid::no
- 0.5 &lt; min_detector_window_overlap_iou &lt; 1
ensures
- This function should be used when scale-invariance is not desired, and
there is no intention to apply an image pyramid.
- This function tries to automatically set the MMOD options to reasonable
values, assuming you have a training dataset of boxes.size() images, where
the ith image contains objects boxes[i] you want to detect.
- The most important thing this function does is decide what detector
windows should be used. This is done by finding a set of detector
windows that are sized such that:
- When slid over an image, each box in boxes will have an
intersection-over-union with one of the detector windows of at least
min_detector_window_overlap_iou. That is, we will make sure that
each box in boxes could potentially be detected by one of the
detector windows.
- This function will also set the overlaps_nms tester to the most
restrictive tester that doesn't reject anything in boxes.
!*/</font>
<b>}</b>;
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> mmod_options<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>mmod_options<font color='#5555FF'>&amp;</font> item, std::istream<font color='#5555FF'>&amp;</font> in<font face='Lucida Console'>)</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_mmod_'></a>loss_mmod_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the Max Margin Object
Detection loss defined in the paper:
Max-Margin Object Detection by Davis E. King (http://arxiv.org/abs/1502.00046).
This means you use this loss if you want to detect the locations of objects
in images.
It should also be noted that this loss layer requires an input layer that
defines the following functions:
- image_contained_point()
- tensor_space_to_image_space()
- image_space_to_tensor_space()
A reference implementation of them and their definitions can be found in
the input_rgb_image_pyramid object, which is the recommended input layer to
be used with loss_mmod_.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'>&lt;</font>mmod_rect<font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'>&lt;</font>mmod_rect<font color='#5555FF'>&gt;</font> output_label_type;
<b><a name='loss_mmod_'></a>loss_mmod_</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_options() == mmod_options()
!*/</font>
<b><a name='loss_mmod_'></a>loss_mmod_</b><font face='Lucida Console'>(</font>
mmod_options options_
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_options() == options_
!*/</font>
<font color='#0000FF'>const</font> mmod_options<font color='#5555FF'>&amp;</font> <b><a name='get_options'></a>get_options</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the options object that defines the general behavior of this loss layer.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter,
<font color='#0000FF'><u>double</u></font> adjust_threshold <font color='#5555FF'>=</font> <font color='#979000'>0</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
Also, the output labels are std::vectors of mmod_rects where, for each mmod_rect R,
we have the following interpretations:
- R.rect == the location of an object in the image.
- R.detection_confidence the score for the object, the bigger the score the
more confident the detector is that an object is really there. Only
objects with a detection_confidence &gt; adjust_threshold are output. So if
you want to output more objects (that are also of less confidence) you
can call to_label() with a smaller value of adjust_threshold.
- R.ignore == false (this value is unused by to_label()).
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
Also, the loss value returned is roughly equal to the average number of
mistakes made per image. This is the sum of false alarms and missed
detections, weighted by the loss weights for these types of mistakes specified
in the mmod_options.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_mmod <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_mmod_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_metric_'></a>loss_metric_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it allows you to learn to map objects
into a vector space where objects sharing the same class label are close to
each other, while objects with different labels are far apart.
To be specific, it optimizes the following loss function which considers
all pairs of objects in a mini-batch and computes a different loss depending
on their respective class labels. So if objects A1 and A2 in a mini-batch
share the same class label then their contribution to the loss is:
max(0, length(A1-A2)-get_distance_threshold() + get_margin())
While if A1 and B1 have different class labels then their contribution to
the loss function is:
max(0, get_distance_threshold()-length(A1-B1) + get_margin())
Therefore, this loss layer optimizes a version of the hinge loss.
Moreover, the loss is trying to make sure that all objects with the same
label are within get_distance_threshold() distance of each other.
Conversely, if two objects have different labels then they should be more
than get_distance_threshold() distance from each other in the learned
embedding. So this loss function gives you a natural decision boundary for
deciding if two objects are from the same class.
Finally, the loss balances the number of negative pairs relative to the
number of positive pairs. Therefore, if there are N pairs that share the
same identity in a mini-batch then the algorithm will only include the N
worst non-matching pairs in the loss. That is, the algorithm performs hard
negative mining on the non-matching pairs. This is important since there
are in general way more non-matching pairs than matching pairs. So to
avoid imbalance in the loss this kind of hard negative mining is useful.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>&gt;</font> output_label_type;
<b><a name='loss_metric_'></a>loss_metric_</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_margin() == 0.04
- #get_distance_threshold() == 0.6
!*/</font>
<b><a name='loss_metric_'></a>loss_metric_</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> margin,
<font color='#0000FF'><u>float</u></font> dist_thresh
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- margin &gt; 0
- dist_thresh &gt; 0
ensures
- #get_margin() == margin
- #get_distance_threshold() == dist_thresh
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
This loss expects the network to produce a single vector (per sample) as
output. This vector is the learned embedding. Therefore, to_label() just
copies these output vectors from the network into the output label_iterators
given to this function, one for each sample in the input_tensor.
!*/</font>
<font color='#0000FF'><u>float</u></font> <b><a name='get_margin'></a>get_margin</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the margin value used by the loss function. See the discussion
in WHAT THIS OBJECT REPRESENTS for details.
!*/</font>
<font color='#0000FF'><u>float</u></font> <b><a name='get_distance_threshold'></a>get_distance_threshold</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the distance threshold value used by the loss function. See the discussion
in WHAT THIS OBJECT REPRESENTS for details.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_metric <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_metric_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_ranking_'></a>loss_ranking_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the pairwise ranking
loss described in the paper:
Optimizing Search Engines using Clickthrough Data by Thorsten Joachims
This is the same loss function used by the dlib::svm_rank_trainer object.
Therefore, it is generally appropriate when you have a two class problem
and you want to learn a function that ranks one class before the other.
So for example, suppose you have two classes of data. Objects of type A
and objects of type B. Moreover, suppose that you want to sort the objects
so that A objects always come before B objects. This loss will help you
learn a function that assigns a real number to each object such that A
objects get a larger number assigned to them than B objects. This lets you
then sort the objects according to the output of the neural network and
obtain the desired result of having A objects come before B objects.
The training labels should be positive values for objects you want to get
high scores and negative for objects that should get small scores. So
relative to our A/B example, you would give A objects labels of +1 and B
objects labels of -1. This should cause the learned network to give A
objects large positive values and B objects negative values.
Finally, the specific loss function is:
For all pairs of positive vs negative training examples A_i and B_j respectively:
sum_ij: max(0, B_i - A_j + margin_ij)
where margin_ij = the label for A_j minus the label for B_i. If you
always use +1 and -1 labels then the margin is always 2. However, this
formulation allows you to give certain training samples different weight by
adjusting the training labels appropriately.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted ranking score.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_ranking <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_ranking_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the epsilon insensitive
loss, which is appropriate for regression problems. In particular, this
loss function is;
loss(y1,y2) = abs(y1-y2)&lt;epsilon ? 0 : abs(y1-y2)-epsilon
Therefore, the loss is basically just the abs() loss except there is a dead
zone around zero, causing the loss to not care about mistakes of magnitude
smaller than epsilon.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type;
<b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<font color='#009900'>/*!
ensures
- #get_epsilon() == 1
!*/</font>
<b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>double</u></font> eps
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps &gt;= 0
ensures
- #get_epsilon() == eps
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_epsilon'></a>get_epsilon</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the epsilon value used in the loss function. Mistakes in the
regressor smaller than get_epsilon() are ignored by the loss function.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_epsilon'></a>set_epsilon</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>double</u></font> eps
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps &gt;= 0
ensures
- #get_epsilon() == eps
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted continuous variable.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_epsilon_insensitive <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_epsilon_insensitive_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_'></a>loss_mean_squared_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, which is
appropriate for regression problems.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted continuous variable.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_mean_squared <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_mean_squared_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_multioutput_'></a>loss_mean_squared_multioutput_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss,
which is appropriate for regression problems. It is basically just like
loss_mean_squared_ except that it lets you define multiple outputs instead
of just 1.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted continuous variable.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- (*(truth + idx)).nc() == 1 for all idx such that 0 &lt;= idx &lt; sub.get_output().num_samples()
- (*(truth + idx)).nr() == sub.get_output().k() for all idx such that 0 &lt;= idx &lt; sub.get_output().num_samples()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_mean_squared_multioutput <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_mean_squared_multioutput_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_binary_log_per_pixel_'></a>loss_binary_log_per_pixel_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the log loss, which is
appropriate for binary classification problems. It is basically just like
loss_binary_log_ except that it lets you define matrix outputs instead
of scalar outputs. It should be useful, for example, in segmentation
where we want to classify each pixel of an image, and also get at least
some sort of confidence estimate for each pixel.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the raw score for each classified object. If the score
is &gt; 0 then the classifier is predicting the +1 class, otherwise it is
predicting the -1 class.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all pixel values pointed to by truth correspond to the desired target values.
Nominally they should be +1 or -1, each indicating the desired class label,
or 0 to indicate that the corresponding pixel is to be ignored.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_binary_log_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_binary_log_per_pixel_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_per_pixel_'></a>loss_multiclass_log_per_pixel_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic
regression loss (e.g. negative log-likelihood loss), which is appropriate
for multiclass classification problems. It is basically just like
loss_multiclass_log_ except that it lets you define matrix outputs instead
of scalar outputs. It should be useful, for example, in semantic
segmentation where we want to classify each pixel of an image.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#009900'>// In semantic segmentation, if you don't know the ground-truth of some pixel,
</font> <font color='#009900'>// set the label of that pixel to this value. When you do so, the pixel will be
</font> <font color='#009900'>// ignored when computing gradients.
</font> <font color='#0000FF'>static</font> <font color='#0000FF'>const</font> uint16_t label_to_ignore <font color='#5555FF'>=</font> std::numeric_limits<font color='#5555FF'>&lt;</font>uint16_t<font color='#5555FF'>&gt;</font>::<b><a name='max'></a>max</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// In semantic segmentation, 65535 classes ought to be enough for anybody.
</font> <font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font>uint16_t<font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font>uint16_t<font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted class for each classified element. The number
of possible output classes is sub.get_output().k().
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all values pointed to by truth are &lt; sub.get_output().k() or are equal to label_to_ignore.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multiclass_log_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multiclass_log_per_pixel_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_per_pixel_weighted_'></a>loss_multiclass_log_per_pixel_weighted_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic
regression loss (e.g. negative log-likelihood loss), which is appropriate
for multiclass classification problems. It is basically just like
loss_multiclass_log_per_pixel_ except that it lets you define per-pixel
weights, which may be useful e.g. if you want to emphasize rare classes
while training. (If the classification problem is difficult, a flat weight
structure may lead the network to always predict the most common label, in
particular if the degree of imbalance is high. To emphasize a certain
class or classes, simply increase the weights of the corresponding pixels,
relative to the weights of the other pixels.)
Note that if you set the weight to 0 whenever a pixel's label is equal to
loss_multiclass_log_per_pixel_::label_to_ignore, and to 1 otherwise, then
you essentially get loss_multiclass_log_per_pixel_ as a special case.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> dlib::weighted_label<font color='#5555FF'>&lt;</font>uint16_t<font color='#5555FF'>&gt;</font> weighted_label;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font>weighted_label<font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font>uint16_t<font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted class for each classified element. The number
of possible output classes is sub.get_output().k().
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- all labels pointed to by truth are &lt; sub.get_output().k(), or the corresponding weight
is zero.
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_multiclass_log_per_pixel_weighted <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_multiclass_log_per_pixel_weighted_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_per_pixel_'></a>loss_mean_squared_per_pixel_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss,
which is appropriate for regression problems. It is basically just like
loss_mean_squared_multioutput_ except that it lets you define matrix or
image outputs, instead of vector.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output labels are the predicted continuous variables.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- for all idx such that 0 &lt;= idx &lt; sub.get_output().num_samples():
- sub.get_output().nr() == (*(truth + idx)).nr()
- sub.get_output().nc() == (*(truth + idx)).nc()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_mean_squared_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_mean_squared_per_pixel_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'><u>long</u></font> _num_channels<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_per_channel_and_pixel_'></a>loss_mean_squared_per_channel_and_pixel_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss,
which is appropriate for regression problems. It is basically just like
loss_mean_squared_per_pixel_ except that it computes the loss over all
channels, not just the first one.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> std::array<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font>, _num_channels<font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> std::array<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>&gt;</font>, _num_channels<font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.get_output().k() == _num_channels
- sub.sample_expansion_factor() == 1
and the output labels are the predicted continuous variables.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().k() == _num_channels
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- for all idx such that 0 &lt;= idx &lt; sub.get_output().num_samples():
- sub.get_output().nr() == (*(truth + idx)).nr()
- sub.get_output().nc() == (*(truth + idx)).nc()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'><u>long</u></font> num_channels, <font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_mean_squared_per_channel_and_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_mean_squared_per_channel_and_pixel_<font color='#5555FF'>&lt;</font>num_channels<font color='#5555FF'>&gt;</font>, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='loss_dot_'></a>loss_dot_</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, selecting this loss means you want
maximize the dot product between the output of a network and a set of
training vectors. The loss is therefore the negative dot product. To be
very specific, if X is the output vector of a network and Y is a training
label (also a vector), then the loss for this training sample is: -dot(X,Y)
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>&gt;</font> training_label_type;
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>&gt;</font> output_label_type;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> SUB_TYPE,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&amp;</font> sub,
label_iterator iter
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output labels are simply the final network outputs stuffed into a
vector. To be very specific, the output is the following for all valid i:
*(iter+i) == trans(rowm(mat(sub.get_output()),i))
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
<font color='#0000FF'>typename</font> const_label_iterator,
<font color='#0000FF'>typename</font> SUBNET
<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> input_tensor,
const_label_iterator truth,
SUBNET<font color='#5555FF'>&amp;</font> sub
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
- Let NETWORK_OUTPUT_DIMS == sub.get_output().size()/sub.get_output().num_samples()
- for all idx such that 0 &lt;= idx &lt; sub.get_output().num_samples():
- NETWORK_OUTPUT_DIMS == (*(truth + idx)).size()
!*/</font>
<b>}</b>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> loss_dot <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'>&lt;</font>loss_dot_, SUBNET<font color='#5555FF'>&gt;</font>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<b>}</b>
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_DNn_LOSS_ABSTRACT_H_
</font>
</pre></body></html>