|
<html><head><title>dlib C++ Library - loss_abstract.h</title></head><body bgcolor='white'><pre> |
|
<font color='#009900'>// Copyright (C) 2015 Davis E. King (davis@dlib.net) |
|
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license. |
|
</font><font color='#0000FF'>#undef</font> DLIB_DNn_LOSS_ABSTRACT_H_ |
|
<font color='#0000FF'>#ifdef</font> DLIB_DNn_LOSS_ABSTRACT_H_ |
|
|
|
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='core_abstract.h.html'>core_abstract.h</a>" |
|
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../image_processing/full_object_detection_abstract.h.html'>../image_processing/full_object_detection_abstract.h</a>" |
|
|
|
<font color='#0000FF'>namespace</font> dlib |
|
<b>{</b> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
A loss layer is the final layer in a deep neural network. It computes the |
|
task loss. That is, it computes a number that tells us how well the |
|
network is performing on some task, such as predicting a binary label. |
|
|
|
You can use one of the loss layers that comes with dlib (defined below). |
|
But importantly, you are able to define your own loss layers to suit your |
|
needs. You do this by creating a class that defines an interface matching |
|
the one described by this EXAMPLE_LOSS_LAYER_ class. Note that there is no |
|
dlib::EXAMPLE_LOSS_LAYER_ type. It is shown here purely to document the |
|
interface that a loss layer must implement. |
|
|
|
A loss layer can optionally provide a to_label() method that converts the |
|
output of a network into a user defined type. If to_label() is not |
|
provided then the operator() methods of add_loss_layer will not be |
|
available, but otherwise everything will function as normal. |
|
|
|
Finally, note that there are two broad flavors of loss layer, supervised |
|
and unsupervised. The EXAMPLE_LOSS_LAYER_ as shown here is a supervised |
|
layer. To make an unsupervised loss you simply leave out the |
|
training_label_type typedef and the truth iterator argument to |
|
compute_loss_value_and_gradient(). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#009900'>// In most cases training_label_type and output_label_type will be the same type. |
|
</font> <font color='#0000FF'>typedef</font> whatever_type_you_use_for_training_labels training_label_type; |
|
<font color='#0000FF'>typedef</font> whatever_type_you_use_for_outout_labels output_label_type; |
|
|
|
<b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b> <font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- EXAMPLE_LOSS_LAYER_ objects are default constructable. |
|
!*/</font> |
|
|
|
<b><a name='EXAMPLE_LOSS_LAYER_'></a>EXAMPLE_LOSS_LAYER_</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&</font> item |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- EXAMPLE_LOSS_LAYER_ objects are copy constructable. |
|
!*/</font> |
|
|
|
<font color='#009900'>// Implementing to_label() is optional. |
|
</font> <font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- SUBNET implements the SUBNET interface defined at the top of |
|
layers_abstract.h. |
|
- input_tensor was given as input to the network sub and the outputs are |
|
now visible in layer<i>(sub).get_output(), for all valid i. |
|
- input_tensor.num_samples() > 0 |
|
- input_tensor.num_samples()%sub.sample_expansion_factor() == 0. |
|
- iter == an iterator pointing to the beginning of a range of |
|
input_tensor.num_samples()/sub.sample_expansion_factor() elements. Moreover, |
|
they must be output_label_type elements. |
|
ensures |
|
- Converts the output of the provided network to output_label_type objects and |
|
stores the results into the range indicated by iter. In particular, for |
|
all valid i, it will be the case that: |
|
*(iter+i/sub.sample_expansion_factor()) is populated based on the output of |
|
sub and corresponds to the ith sample in input_tensor. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- SUBNET implements the SUBNET interface defined at the top of |
|
layers_abstract.h. |
|
- input_tensor was given as input to the network sub and the outputs are |
|
now visible in layer<i>(sub).get_output(), for all valid i. |
|
- input_tensor.num_samples() > 0 |
|
- input_tensor.num_samples()%sub.sample_expansion_factor() == 0. |
|
- for all valid i: |
|
- layer<i>(sub).get_gradient_input() has the same dimensions as |
|
layer<i>(sub).get_output(). |
|
- layer<i>(sub).get_gradient_input() contains all zeros (i.e. |
|
initially, all input gradients are 0). |
|
- truth == an iterator pointing to the beginning of a range of |
|
input_tensor.num_samples()/sub.sample_expansion_factor() elements. Moreover, |
|
they must be training_label_type elements. |
|
- for all valid i: |
|
- *(truth+i/sub.sample_expansion_factor()) is the label of the ith sample in |
|
input_tensor. |
|
ensures |
|
- This function computes a loss function that describes how well the output |
|
of sub matches the expected labels given by truth. Let's write the loss |
|
function as L(input_tensor, truth, sub). |
|
- Then compute_loss_value_and_gradient() computes the gradient of L() with |
|
respect to the outputs in sub. Specifically, compute_loss_value_and_gradient() |
|
assigns the gradients into sub by performing the following tensor |
|
assignments, for all valid i: |
|
- layer<i>(sub).get_gradient_input() = the gradient of |
|
L(input_tensor,truth,sub) with respect to layer<i>(sub).get_output(). |
|
Note that, since get_gradient_input() is zero initialized, you don't |
|
have to write gradient information to layers that have a zero |
|
loss gradient. |
|
- returns L(input_tensor,truth,sub) |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
std::ostream<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'><</font><font color='#5555FF'><</font><font face='Lucida Console'>(</font>std::ostream<font color='#5555FF'>&</font> out, <font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&</font> item<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
print a string describing this layer. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_xml'></a>to_xml</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&</font> item, std::ostream<font color='#5555FF'>&</font> out<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
This function is optional, but required if you want to print your networks with |
|
net_to_xml(). Therefore, to_xml() prints a layer as XML. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&</font> item, std::ostream<font color='#5555FF'>&</font> out<font face='Lucida Console'>)</font>; |
|
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>EXAMPLE_LOSS_LAYER_<font color='#5555FF'>&</font> item, std::istream<font color='#5555FF'>&</font> in<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
provides serialization support |
|
!*/</font> |
|
|
|
<font color='#009900'>// For each loss layer you define, always define an add_loss_layer template so that |
|
</font> <font color='#009900'>// layers can be easily composed. Moreover, the convention is that the layer class |
|
</font> <font color='#009900'>// ends with an _ while the add_loss_layer template has the same name but without the |
|
</font> <font color='#009900'>// trailing _. |
|
</font> <font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> EXAMPLE_LOSS_LAYER <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>EXAMPLE_LOSS_LAYER_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font><font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font><font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_binary_hinge_'></a>loss_binary_hinge_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the hinge loss, which is |
|
appropriate for binary classification problems. Therefore, the possible |
|
labels when using this loss are +1 and -1. Moreover, it will cause the |
|
network to produce outputs > 0 when predicting a member of the +1 class and |
|
values < 0 otherwise. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the raw score for each classified object. If the score |
|
is > 0 then the classifier is predicting the +1 class, otherwise it is |
|
predicting the -1 class. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all values pointed to by truth are +1 or -1. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_binary_hinge <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_binary_hinge_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_binary_log_'></a>loss_binary_log_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the log loss, which is |
|
appropriate for binary classification problems. Therefore, there are two possible |
|
classes of labels: positive (> 0) and negative (< 0) when using this loss. |
|
The absolute value of the label represents its weight. Putting a larger weight |
|
on a sample increases the importance of getting its prediction correct during |
|
training. A good rule of thumb is to use weights with absolute value 1 unless |
|
you have a very unbalanced training dataset, in that case, give larger weight |
|
to the class with less training examples. |
|
|
|
This loss will cause the network to produce outputs > 0 when predicting a |
|
member of the positive class and values < 0 otherwise. |
|
|
|
To be more specific, this object contains a sigmoid layer followed by a |
|
cross-entropy layer. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the raw score for each classified object. If the score |
|
is > 0 then the classifier is predicting the +1 class, otherwise it is |
|
predicting the -1 class. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all values pointed to by truth are non-zero. Nominally they should be +1 or -1, |
|
each indicating the desired class label. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_binary_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_binary_log_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_'></a>loss_multiclass_log_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic |
|
regression loss (e.g. negative log-likelihood loss), which is appropriate |
|
for multiclass classification problems. This means that the possible |
|
labels when using this loss are integers >= 0. |
|
|
|
Moreover, if after training you were to replace the loss layer of the |
|
network with a softmax layer, the network outputs would give the |
|
probabilities of each class assignment. That is, if you have K classes |
|
then the network should output tensors with the tensor::k()'th dimension |
|
equal to K. Applying softmax to these K values gives the probabilities of |
|
each class. The index into that K dimensional vector with the highest |
|
probability is the predicted class label. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted class for each classified object. The number |
|
of possible output classes is sub.get_output().k(). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all values pointed to by truth are < sub.get_output().k() |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multiclass_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multiclass_log_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> label_type<font color='#5555FF'>></font> |
|
<font color='#0000FF'>struct</font> <b><a name='weighted_label'></a>weighted_label</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object represents the truth label of a single sample, together with |
|
an associated weight (the higher the weight, the more emphasis the |
|
corresponding sample is given during the training). |
|
For technical reasons, it is defined in misc.h |
|
This object is used in the following loss layers: |
|
- loss_multiclass_log_weighted_ with unsigned long as label_type |
|
- loss_multiclass_log_per_pixel_weighted_ with uint16_t as label_type, |
|
since, in semantic segmentation, 65536 classes ought to be enough for |
|
anybody. |
|
!*/</font> |
|
<b><a name='weighted_label'></a>weighted_label</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> |
|
<b>{</b><b>}</b> |
|
|
|
<b><a name='weighted_label'></a>weighted_label</b><font face='Lucida Console'>(</font>label_type label, <font color='#0000FF'><u>float</u></font> weight <font color='#5555FF'>=</font> <font color='#979000'>1.f</font><font face='Lucida Console'>)</font> |
|
: label<font face='Lucida Console'>(</font>label<font face='Lucida Console'>)</font>, weight<font face='Lucida Console'>(</font>weight<font face='Lucida Console'>)</font> |
|
<b>{</b><b>}</b> |
|
|
|
<font color='#009900'>// The ground truth label |
|
</font> label_type label<b>{</b><b>}</b>; |
|
|
|
<font color='#009900'>// The weight of the corresponding sample |
|
</font> <font color='#0000FF'><u>float</u></font> weight <font color='#5555FF'>=</font> <font color='#979000'>1.f</font>; |
|
<b>}</b>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_weighted_'></a>loss_multiclass_log_weighted_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic |
|
regression loss (e.g. negative log-likelihood loss), which is appropriate |
|
for multiclass classification problems. It is basically just like the |
|
loss_multiclass_log except that it lets you define per-sample weights, |
|
which might be useful e.g. if you want to emphasize rare classes while |
|
training. If the classification problem is difficult, a flat weight |
|
structure may lead the network to always predict the most common label, |
|
in particular if the degree of imbalance is high. To emphasize a certain |
|
class or classes, simply increase the weights of the corresponding samples, |
|
relative to the weights of other pixels. |
|
|
|
Note that if you set all the weights equals to 1, then you get |
|
loss_multiclass_log_ as a special case. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> dlib::weighted_label<font color='#5555FF'><</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>></font> weighted_label; |
|
<font color='#0000FF'>typedef</font> weighted_label training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted class for each classified object. The number |
|
of possible output classes is sub.get_output().k(). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all values pointed to by truth are < sub.get_output().k() |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multiclass_log_weighted <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multiclass_log_weighted_, SUBNET<font color='#5555FF'>></font>;<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements a collection of |
|
multiclass classifiers. An example will make its use clear. So suppose, |
|
for example, that you want to make something that takes a picture of a |
|
vehicle and answers the following questions: |
|
- What type of vehicle is it? A sedan or a truck? |
|
- What color is it? red, green, blue, gray, or black? |
|
You need two separate multi-class classifiers to do this. One to decide |
|
the type of vehicle, and another to decide the color. The |
|
loss_multimulticlass_log_ allows you to pack these two classifiers into one |
|
neural network. This means that when you use the network to process an |
|
image it will output 2 labels for each image, the type label and the color |
|
label. |
|
|
|
To create a loss_multimulticlass_log_ for the above case you would |
|
construct it as follows: |
|
std::map<std::string,std::vector<std::string>> labels; |
|
labels["type"] = {"sedan", "truck"}; |
|
labels["color"] = {"red", "green", "blue", "gray", "black"}; |
|
loss_multimulticlass_log_ myloss(labels); |
|
Then you could use myloss with a network object and train it to do this |
|
task. More generally, you can use any number of classifiers and labels |
|
when using this object. Finally, each of the classifiers uses a standard |
|
multi-class logistic regression loss. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #number_of_labels() == 0 |
|
- #get_labels().size() == 0 |
|
!*/</font> |
|
|
|
<b><a name='loss_multimulticlass_log_'></a>loss_multimulticlass_log_</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::map<font color='#5555FF'><</font>std::string,std::vector<font color='#5555FF'><</font>std::string<font color='#5555FF'>></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> labels |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- Each vector in labels must contain at least 2 strings. I.e. each |
|
classifier must have at least two possible labels. |
|
ensures |
|
- #number_of_labels() == the total number of strings in all the |
|
std::vectors in labels. |
|
- #number_of_classifiers() == labels.size() |
|
- #get_labels() == labels |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='number_of_labels'></a>number_of_labels</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the total number of labels known to this loss. This is the count of |
|
all the labels in each classifier. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='number_of_classifiers'></a>number_of_classifiers</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the number of classifiers defined by this loss. |
|
!*/</font> |
|
|
|
std::map<font color='#5555FF'><</font>std::string,std::vector<font color='#5555FF'><</font>std::string<font color='#5555FF'>></font><font color='#5555FF'>></font> <b><a name='get_labels'></a>get_labels</b> <font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the names of the classifiers and labels used by this loss. In |
|
particular, if the returned object is L then: |
|
- L[CLASS] == the set of labels used by the classifier CLASS. |
|
- L.size() == number_of_classifiers() |
|
- The count of strings in the vectors in L == number_of_labels() |
|
!*/</font> |
|
|
|
<font color='#0000FF'>class</font> <b><a name='classifier_output'></a>classifier_output</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object stores the predictions from one of the classifiers in |
|
loss_multimulticlass_log_. It allows you to find out the most likely |
|
string label predicted by that classifier, as well as get the class |
|
conditional probability of any of the classes in the classifier. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<b><a name='classifier_output'></a>classifier_output</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #num_classes() == 0 |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>size_t</u></font> <b><a name='num_classes'></a>num_classes</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the number of possible classes output by this classifier. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>double</u></font> <b><a name='probability_of_class'></a>probability_of_class</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'><u>size_t</u></font> i |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- i < num_classes() |
|
ensures |
|
- returns the probability that the true class has a label of label(i). |
|
- The sum of probability_of_class(j) for j in the range [0, num_classes()) is always 1. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> <b><a name='label'></a>label</b><font face='Lucida Console'>(</font> |
|
<font color='#0000FF'><u>size_t</u></font> i |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- i < num_classes() |
|
ensures |
|
- returns the string label for the ith class. |
|
!*/</font> |
|
|
|
<b><a name='operator'></a>operator</b> std::<b><a name='string'></a>string</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- num_classes() != 0 |
|
ensures |
|
- returns the string label for the most probable class. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>friend</font> std::ostream<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'><</font><font color='#5555FF'><</font> <font face='Lucida Console'>(</font>std::ostream<font color='#5555FF'>&</font> out, <font color='#0000FF'>const</font> classifier_output<font color='#5555FF'>&</font> item<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- num_classes() != 0 |
|
ensures |
|
- prints the most probable class label to out. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#009900'>// Both training_label_type and output_label_type should always have sizes equal to |
|
</font> <font color='#009900'>// number_of_classifiers(). That is, the std::map should have an entry for every |
|
</font> <font color='#009900'>// classifier known to this loss. |
|
</font> <font color='#0000FF'>typedef</font> std::map<font color='#5555FF'><</font>std::string,std::string<font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> std::map<font color='#5555FF'><</font>std::string,classifier_output<font color='#5555FF'>></font> output_label_type; |
|
|
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- number_of_labels() != 0 |
|
- sub.get_output().k() == number_of_labels() |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- number_of_labels() != 0 |
|
- sub.get_output().k() == number_of_labels() |
|
It should be noted that the last layer in your network should usually |
|
be an fc layer. If so, you can satisfy this requirement of k() being |
|
number_of_labels() by calling set_num_outputs() prior to training your |
|
network like so: |
|
your_network.subnet().layer_details().set_num_outputs(your_network.loss_details().number_of_labels()); |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- All the std::maps pointed to by truth contain entries for all the |
|
classifiers known to this loss. That is, it must be valid to call |
|
truth[i][classifier] for any of the classifiers known to this loss. To |
|
say this another way, all the training samples must contain labels for |
|
each of the classifiers defined by this loss. |
|
|
|
To really belabor this, this also means that truth[i].size() == |
|
get_labels().size() and that both truth[i] and get_labels() have the same |
|
set of key strings. It also means that the value strings in truth[i] |
|
must be strings known to the loss, i.e. they are valid labels according |
|
to get_labels(). |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multimulticlass_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multimulticlass_log_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// Allow comparison between classifier_outputs and std::string to check if the |
|
</font> <font color='#009900'>// predicted class is a particular string. |
|
</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>bool</u></font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> lhs, <font color='#0000FF'>const</font> loss_multimulticlass_log_::classifier_output<font color='#5555FF'>&</font> rhs<font face='Lucida Console'>)</font> |
|
<b>{</b> <font color='#0000FF'>return</font> lhs <font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font color='#0000FF'>static_cast</font><font color='#5555FF'><</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font><font color='#5555FF'>></font><font face='Lucida Console'>(</font>rhs<font face='Lucida Console'>)</font>; <b>}</b> |
|
<font color='#0000FF'>inline</font> <font color='#0000FF'><u>bool</u></font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> loss_multimulticlass_log_::classifier_output<font color='#5555FF'>&</font> lhs, <font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> rhs<font face='Lucida Console'>)</font> |
|
<b>{</b> <font color='#0000FF'>return</font> rhs <font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font color='#0000FF'>static_cast</font><font color='#5555FF'><</font><font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font><font color='#5555FF'>></font><font face='Lucida Console'>(</font>lhs<font face='Lucida Console'>)</font>; <b>}</b> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multibinary_log_'></a>loss_multibinary_log_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements a collection of |
|
binary classifiers using the log loss, which is appropriate for |
|
binary classification problems where each sample can belong to zero |
|
or more categories. Therefore, there are two possible classes of labels: |
|
positive (> 0) and negative (< 0) when using this loss. |
|
The absolute value of the label represents its weight. Putting a larger |
|
weight on a sample increases its importance of getting its prediction |
|
correct during training. A good rule of thumb is to use weights with |
|
absolute value 1 unless you have a very unbalanced training dataset, |
|
in that case, give larger weight to the class with less training examples. |
|
|
|
This loss will cause the network to produce outputs > 0 when predicting a |
|
member of the positive classes and values < 0 otherwise. |
|
|
|
To be more specific, this object contains a sigmoid layer followed by a |
|
cross-entropy layer. |
|
|
|
An example will make its use clear. So suppose, for example, that you want |
|
to make a classifier for cats and dogs, but what happens if they both |
|
appear in one image? Or none of them? This layer allows you to handle |
|
those use cases by using the following labels: |
|
- std::vector<float> dog_label = {1.f, -1.f}; |
|
- std::vector<float> cat_label = {-1.f , 1.f}; |
|
- std::vector<float> both_label = {1.f, 1.f}; |
|
- std::vector<float> none_label = {-1.f, -1.f}; |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output labels are the raw scores for each classified object. If a score |
|
is > 0 then the classifier is predicting the +1 class for that category, otherwise |
|
it is predicting the -1 class. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- truth points to training_label_type elements, each of size sub.get_output.k(). |
|
The elements of each truth training_label_type instance are nominally +1 or -1, |
|
each representing a binary class label. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multibinary_log <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multibinary_log_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font><font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>enum</font> <font color='#0000FF'>class</font> <b><a name='use_image_pyramid'></a>use_image_pyramid</b> : uint8_t |
|
<b>{</b> |
|
no, |
|
yes |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>struct</font> <b><a name='mmod_options'></a>mmod_options</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object contains all the parameters that control the behavior of loss_mmod_. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>struct</font> <b><a name='detector_window_details'></a>detector_window_details</b> |
|
<b>{</b> |
|
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>; |
|
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> w, <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> h<font face='Lucida Console'>)</font> : width<font face='Lucida Console'>(</font>w<font face='Lucida Console'>)</font>, height<font face='Lucida Console'>(</font>h<font face='Lucida Console'>)</font> <b>{</b><b>}</b> |
|
<b><a name='detector_window_details'></a>detector_window_details</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> w, <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> h, <font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> l<font face='Lucida Console'>)</font> : width<font face='Lucida Console'>(</font>w<font face='Lucida Console'>)</font>, height<font face='Lucida Console'>(</font>h<font face='Lucida Console'>)</font>, label<font face='Lucida Console'>(</font>l<font face='Lucida Console'>)</font> <b>{</b><b>}</b> |
|
|
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> width <font color='#5555FF'>=</font> <font color='#979000'>0</font>; |
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> height <font color='#5555FF'>=</font> <font color='#979000'>0</font>; |
|
std::string label; |
|
|
|
<font color='#0000FF'>friend</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> detector_window_details<font color='#5555FF'>&</font> item, std::ostream<font color='#5555FF'>&</font> out<font face='Lucida Console'>)</font>; |
|
<font color='#0000FF'>friend</font> <font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>detector_window_details<font color='#5555FF'>&</font> item, std::istream<font color='#5555FF'>&</font> in<font face='Lucida Console'>)</font>; |
|
<b>}</b>; |
|
|
|
<b><a name='mmod_options'></a>mmod_options</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>; |
|
|
|
<font color='#009900'>// This kind of object detector is a sliding window detector. The detector_windows |
|
</font> <font color='#009900'>// field determines how many sliding windows we will use and what the shape of each |
|
</font> <font color='#009900'>// window is. It also determines the output label applied to each detection |
|
</font> <font color='#009900'>// identified by each window. Since you will usually use the MMOD loss with an |
|
</font> <font color='#009900'>// image pyramid, the detector sizes also determine the size of the smallest object |
|
</font> <font color='#009900'>// you can detect. |
|
</font> std::vector<font color='#5555FF'><</font>detector_window_details<font color='#5555FF'>></font> detector_windows; |
|
|
|
<font color='#009900'>// These parameters control how we penalize different kinds of mistakes. See |
|
</font> <font color='#009900'>// Max-Margin Object Detection by Davis E. King (http://arxiv.org/abs/1502.00046) |
|
</font> <font color='#009900'>// for further details. |
|
</font> <font color='#0000FF'><u>double</u></font> loss_per_false_alarm <font color='#5555FF'>=</font> <font color='#979000'>1</font>; |
|
<font color='#0000FF'><u>double</u></font> loss_per_missed_target <font color='#5555FF'>=</font> <font color='#979000'>1</font>; |
|
|
|
<font color='#009900'>// A detection must have an intersection-over-union value greater than this for us |
|
</font> <font color='#009900'>// to consider it a match against a ground truth box. |
|
</font> <font color='#0000FF'><u>double</u></font> truth_match_iou_threshold <font color='#5555FF'>=</font> <font color='#979000'>0.5</font>; |
|
|
|
<font color='#009900'>// When doing non-max suppression, we use overlaps_nms to decide if a box overlaps |
|
</font> <font color='#009900'>// an already output detection and should therefore be thrown out. |
|
</font> test_box_overlap overlaps_nms <font color='#5555FF'>=</font> <b><a name='test_box_overlap'></a>test_box_overlap</b><font face='Lucida Console'>(</font><font color='#979000'>0.4</font><font face='Lucida Console'>)</font>; |
|
|
|
<font color='#009900'>// Any mmod_rect in the training data that has its ignore field set to true defines |
|
</font> <font color='#009900'>// an "ignore zone" in an image. Any detection from that area is totally ignored |
|
</font> <font color='#009900'>// by the optimizer. Therefore, this overlaps_ignore field defines how we decide |
|
</font> <font color='#009900'>// if a box falls into an ignore zone. You use these ignore zones if there are |
|
</font> <font color='#009900'>// objects in your dataset that you are unsure if you want to detect or otherwise |
|
</font> <font color='#009900'>// don't care if the detector gets them or not. |
|
</font> test_box_overlap overlaps_ignore; |
|
|
|
<font color='#009900'>// Usually the detector would be scale-invariant, and used with an image pyramid. |
|
</font> <font color='#009900'>// However, sometimes scale-invariance may not be desired. |
|
</font> use_image_pyramid assume_image_pyramid <font color='#5555FF'>=</font> use_image_pyramid::yes; |
|
|
|
<font color='#009900'>// By default, the mmod loss doesn't train any bounding box regression model. But |
|
</font> <font color='#009900'>// if you set use_bounding_box_regression == true then it expects the network to |
|
</font> <font color='#009900'>// output a tensor with detector_windows.size()*5 channels rather than just |
|
</font> <font color='#009900'>// detector_windows.size() channels. The 4 extra channels per window are trained |
|
</font> <font color='#009900'>// to give a bounding box regression output that improves the positioning of the |
|
</font> <font color='#009900'>// output detection box. |
|
</font> <font color='#0000FF'><u>bool</u></font> use_bounding_box_regression <font color='#5555FF'>=</font> <font color='#979000'>false</font>; |
|
<font color='#009900'>// When using bounding box regression, bbr_lambda determines how much you care |
|
</font> <font color='#009900'>// about getting the bounding box shape correct vs just getting the detector to |
|
</font> <font color='#009900'>// find objects. That is, the objective function being optimized is |
|
</font> <font color='#009900'>// basic_mmod_loss + bbr_lambda*bounding_box_regression_loss. So setting |
|
</font> <font color='#009900'>// bbr_lambda to a larger value will cause the overall loss to care more about |
|
</font> <font color='#009900'>// getting the bounding box shape correct. |
|
</font> <font color='#0000FF'><u>double</u></font> bbr_lambda <font color='#5555FF'>=</font> <font color='#979000'>100</font>; |
|
|
|
<font color='#009900'>// Tell the loss not to print warnings about impossible labels. You should think very hard |
|
</font> <font color='#009900'>// before turning this off as it's very often telling you something is really wrong with |
|
</font> <font color='#009900'>// your training data. |
|
</font> <font color='#0000FF'><u>bool</u></font> be_quiet <font color='#5555FF'>=</font> <font color='#979000'>false</font>; |
|
|
|
<b><a name='mmod_options'></a>mmod_options</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>std::vector<font color='#5555FF'><</font>mmod_rect<font color='#5555FF'>></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> boxes, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> target_size, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> min_target_size, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> min_detector_window_overlap_iou <font color='#5555FF'>=</font> <font color='#979000'>0.75</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- 0 < min_target_size <= target_size |
|
- 0.5 < min_detector_window_overlap_iou < 1 |
|
ensures |
|
- use_image_pyramid_ == use_image_pyramid::yes |
|
- This function should be used when scale-invariance is desired, and |
|
input_rgb_image_pyramid is therefore used as the input layer. |
|
- This function tries to automatically set the MMOD options to reasonable |
|
values, assuming you have a training dataset of boxes.size() images, where |
|
the ith image contains objects boxes[i] you want to detect. |
|
- The most important thing this function does is decide what detector |
|
windows should be used. This is done by finding a set of detector |
|
windows that are sized such that: |
|
- When slid over an image pyramid, each box in boxes will have an |
|
intersection-over-union with one of the detector windows of at least |
|
min_detector_window_overlap_iou. That is, we will make sure that |
|
each box in boxes could potentially be detected by one of the |
|
detector windows. This essentially comes down to picking detector |
|
windows with aspect ratios similar to the aspect ratios in boxes. |
|
Note that we also make sure that each box can be detected by a window |
|
with the same label. For example, if all the boxes had the same |
|
aspect ratio but there were 4 different labels used in boxes then |
|
there would be 4 resulting detector windows, one for each label. |
|
- The longest edge of each detector window is target_size pixels in |
|
length, unless the window's shortest side would be less than |
|
min_target_size pixels in length. In this case the shortest side |
|
will be set to min_target_size length, and the other side sized to |
|
preserve the aspect ratio of the window. |
|
This means that target_size and min_target_size control the size of the |
|
detector windows, while the aspect ratios of the detector windows are |
|
automatically determined by the contents of boxes. It should also be |
|
emphasized that the detector isn't going to be able to detect objects |
|
smaller than any of the detector windows. So consider that when setting |
|
these sizes. |
|
- This function will also set the overlaps_nms tester to the most |
|
restrictive tester that doesn't reject anything in boxes. |
|
!*/</font> |
|
|
|
<b><a name='mmod_options'></a>mmod_options</b> <font face='Lucida Console'>(</font> |
|
use_image_pyramid use_image_pyramid, |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>std::vector<font color='#5555FF'><</font>mmod_rect<font color='#5555FF'>></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> boxes, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> min_detector_window_overlap_iou <font color='#5555FF'>=</font> <font color='#979000'>0.75</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- use_image_pyramid == use_image_pyramid::no |
|
- 0.5 < min_detector_window_overlap_iou < 1 |
|
ensures |
|
- This function should be used when scale-invariance is not desired, and |
|
there is no intention to apply an image pyramid. |
|
- This function tries to automatically set the MMOD options to reasonable |
|
values, assuming you have a training dataset of boxes.size() images, where |
|
the ith image contains objects boxes[i] you want to detect. |
|
- The most important thing this function does is decide what detector |
|
windows should be used. This is done by finding a set of detector |
|
windows that are sized such that: |
|
- When slid over an image, each box in boxes will have an |
|
intersection-over-union with one of the detector windows of at least |
|
min_detector_window_overlap_iou. That is, we will make sure that |
|
each box in boxes could potentially be detected by one of the |
|
detector windows. |
|
- This function will also set the overlaps_nms tester to the most |
|
restrictive tester that doesn't reject anything in boxes. |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> mmod_options<font color='#5555FF'>&</font> item, std::ostream<font color='#5555FF'>&</font> out<font face='Lucida Console'>)</font>; |
|
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>mmod_options<font color='#5555FF'>&</font> item, std::istream<font color='#5555FF'>&</font> in<font face='Lucida Console'>)</font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_mmod_'></a>loss_mmod_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the Max Margin Object |
|
Detection loss defined in the paper: |
|
Max-Margin Object Detection by Davis E. King (http://arxiv.org/abs/1502.00046). |
|
|
|
This means you use this loss if you want to detect the locations of objects |
|
in images. |
|
|
|
It should also be noted that this loss layer requires an input layer that |
|
defines the following functions: |
|
- image_contained_point() |
|
- tensor_space_to_image_space() |
|
- image_space_to_tensor_space() |
|
A reference implementation of them and their definitions can be found in |
|
the input_rgb_image_pyramid object, which is the recommended input layer to |
|
be used with loss_mmod_. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'><</font>mmod_rect<font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> std::vector<font color='#5555FF'><</font>mmod_rect<font color='#5555FF'>></font> output_label_type; |
|
|
|
<b><a name='loss_mmod_'></a>loss_mmod_</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #get_options() == mmod_options() |
|
!*/</font> |
|
|
|
<b><a name='loss_mmod_'></a>loss_mmod_</b><font face='Lucida Console'>(</font> |
|
mmod_options options_ |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #get_options() == options_ |
|
!*/</font> |
|
|
|
<font color='#0000FF'>const</font> mmod_options<font color='#5555FF'>&</font> <b><a name='get_options'></a>get_options</b> <font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the options object that defines the general behavior of this loss layer. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter, |
|
<font color='#0000FF'><u>double</u></font> adjust_threshold <font color='#5555FF'>=</font> <font color='#979000'>0</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
Also, the output labels are std::vectors of mmod_rects where, for each mmod_rect R, |
|
we have the following interpretations: |
|
- R.rect == the location of an object in the image. |
|
- R.detection_confidence the score for the object, the bigger the score the |
|
more confident the detector is that an object is really there. Only |
|
objects with a detection_confidence > adjust_threshold are output. So if |
|
you want to output more objects (that are also of less confidence) you |
|
can call to_label() with a smaller value of adjust_threshold. |
|
- R.ignore == false (this value is unused by to_label()). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
Also, the loss value returned is roughly equal to the average number of |
|
mistakes made per image. This is the sum of false alarms and missed |
|
detections, weighted by the loss weights for these types of mistakes specified |
|
in the mmod_options. |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_mmod <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_mmod_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_metric_'></a>loss_metric_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it allows you to learn to map objects |
|
into a vector space where objects sharing the same class label are close to |
|
each other, while objects with different labels are far apart. |
|
|
|
To be specific, it optimizes the following loss function which considers |
|
all pairs of objects in a mini-batch and computes a different loss depending |
|
on their respective class labels. So if objects A1 and A2 in a mini-batch |
|
share the same class label then their contribution to the loss is: |
|
max(0, length(A1-A2)-get_distance_threshold() + get_margin()) |
|
|
|
While if A1 and B1 have different class labels then their contribution to |
|
the loss function is: |
|
max(0, get_distance_threshold()-length(A1-B1) + get_margin()) |
|
|
|
Therefore, this loss layer optimizes a version of the hinge loss. |
|
Moreover, the loss is trying to make sure that all objects with the same |
|
label are within get_distance_threshold() distance of each other. |
|
Conversely, if two objects have different labels then they should be more |
|
than get_distance_threshold() distance from each other in the learned |
|
embedding. So this loss function gives you a natural decision boundary for |
|
deciding if two objects are from the same class. |
|
|
|
Finally, the loss balances the number of negative pairs relative to the |
|
number of positive pairs. Therefore, if there are N pairs that share the |
|
same identity in a mini-batch then the algorithm will only include the N |
|
worst non-matching pairs in the loss. That is, the algorithm performs hard |
|
negative mining on the non-matching pairs. This is important since there |
|
are in general way more non-matching pairs than matching pairs. So to |
|
avoid imbalance in the loss this kind of hard negative mining is useful. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<b><a name='loss_metric_'></a>loss_metric_</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #get_margin() == 0.04 |
|
- #get_distance_threshold() == 0.6 |
|
!*/</font> |
|
|
|
<b><a name='loss_metric_'></a>loss_metric_</b><font face='Lucida Console'>(</font> |
|
<font color='#0000FF'><u>float</u></font> margin, |
|
<font color='#0000FF'><u>float</u></font> dist_thresh |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- margin > 0 |
|
- dist_thresh > 0 |
|
ensures |
|
- #get_margin() == margin |
|
- #get_distance_threshold() == dist_thresh |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
This loss expects the network to produce a single vector (per sample) as |
|
output. This vector is the learned embedding. Therefore, to_label() just |
|
copies these output vectors from the network into the output label_iterators |
|
given to this function, one for each sample in the input_tensor. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>float</u></font> <b><a name='get_margin'></a>get_margin</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the margin value used by the loss function. See the discussion |
|
in WHAT THIS OBJECT REPRESENTS for details. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>float</u></font> <b><a name='get_distance_threshold'></a>get_distance_threshold</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the distance threshold value used by the loss function. See the discussion |
|
in WHAT THIS OBJECT REPRESENTS for details. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_metric <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_metric_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_ranking_'></a>loss_ranking_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the pairwise ranking |
|
loss described in the paper: |
|
Optimizing Search Engines using Clickthrough Data by Thorsten Joachims |
|
|
|
This is the same loss function used by the dlib::svm_rank_trainer object. |
|
Therefore, it is generally appropriate when you have a two class problem |
|
and you want to learn a function that ranks one class before the other. |
|
|
|
So for example, suppose you have two classes of data. Objects of type A |
|
and objects of type B. Moreover, suppose that you want to sort the objects |
|
so that A objects always come before B objects. This loss will help you |
|
learn a function that assigns a real number to each object such that A |
|
objects get a larger number assigned to them than B objects. This lets you |
|
then sort the objects according to the output of the neural network and |
|
obtain the desired result of having A objects come before B objects. |
|
|
|
The training labels should be positive values for objects you want to get |
|
high scores and negative for objects that should get small scores. So |
|
relative to our A/B example, you would give A objects labels of +1 and B |
|
objects labels of -1. This should cause the learned network to give A |
|
objects large positive values and B objects negative values. |
|
|
|
|
|
Finally, the specific loss function is: |
|
For all pairs of positive vs negative training examples A_i and B_j respectively: |
|
sum_ij: max(0, B_i - A_j + margin_ij) |
|
where margin_ij = the label for A_j minus the label for B_i. If you |
|
always use +1 and -1 labels then the margin is always 2. However, this |
|
formulation allows you to give certain training samples different weight by |
|
adjusting the training labels appropriately. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted ranking score. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_ranking <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_ranking_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the epsilon insensitive |
|
loss, which is appropriate for regression problems. In particular, this |
|
loss function is; |
|
loss(y1,y2) = abs(y1-y2)<epsilon ? 0 : abs(y1-y2)-epsilon |
|
|
|
Therefore, the loss is basically just the abs() loss except there is a dead |
|
zone around zero, causing the loss to not care about mistakes of magnitude |
|
smaller than epsilon. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type; |
|
|
|
<b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b><font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- #get_epsilon() == 1 |
|
!*/</font> |
|
|
|
<b><a name='loss_epsilon_insensitive_'></a>loss_epsilon_insensitive_</b><font face='Lucida Console'>(</font> |
|
<font color='#0000FF'><u>double</u></font> eps |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- eps >= 0 |
|
ensures |
|
- #get_epsilon() == eps |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>double</u></font> <b><a name='get_epsilon'></a>get_epsilon</b> <font face='Lucida Console'>(</font> |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
ensures |
|
- returns the epsilon value used in the loss function. Mistakes in the |
|
regressor smaller than get_epsilon() are ignored by the loss function. |
|
!*/</font> |
|
|
|
<font color='#0000FF'><u>void</u></font> <b><a name='set_epsilon'></a>set_epsilon</b><font face='Lucida Console'>(</font> |
|
<font color='#0000FF'><u>double</u></font> eps |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- eps >= 0 |
|
ensures |
|
- #get_epsilon() == eps |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted continuous variable. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_epsilon_insensitive <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_epsilon_insensitive_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_'></a>loss_mean_squared_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, which is |
|
appropriate for regression problems. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted continuous variable. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_mean_squared <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_mean_squared_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_multioutput_'></a>loss_mean_squared_multioutput_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, |
|
which is appropriate for regression problems. It is basically just like |
|
loss_mean_squared_ except that it lets you define multiple outputs instead |
|
of just 1. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted continuous variable. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().nr() == 1 |
|
- sub.get_output().nc() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- (*(truth + idx)).nc() == 1 for all idx such that 0 <= idx < sub.get_output().num_samples() |
|
- (*(truth + idx)).nr() == sub.get_output().k() for all idx such that 0 <= idx < sub.get_output().num_samples() |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_mean_squared_multioutput <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_mean_squared_multioutput_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_binary_log_per_pixel_'></a>loss_binary_log_per_pixel_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the log loss, which is |
|
appropriate for binary classification problems. It is basically just like |
|
loss_binary_log_ except that it lets you define matrix outputs instead |
|
of scalar outputs. It should be useful, for example, in segmentation |
|
where we want to classify each pixel of an image, and also get at least |
|
some sort of confidence estimate for each pixel. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the raw score for each classified object. If the score |
|
is > 0 then the classifier is predicting the +1 class, otherwise it is |
|
predicting the -1 class. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all pixel values pointed to by truth correspond to the desired target values. |
|
Nominally they should be +1 or -1, each indicating the desired class label, |
|
or 0 to indicate that the corresponding pixel is to be ignored. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_binary_log_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_binary_log_per_pixel_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_per_pixel_'></a>loss_multiclass_log_per_pixel_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic |
|
regression loss (e.g. negative log-likelihood loss), which is appropriate |
|
for multiclass classification problems. It is basically just like |
|
loss_multiclass_log_ except that it lets you define matrix outputs instead |
|
of scalar outputs. It should be useful, for example, in semantic |
|
segmentation where we want to classify each pixel of an image. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#009900'>// In semantic segmentation, if you don't know the ground-truth of some pixel, |
|
</font> <font color='#009900'>// set the label of that pixel to this value. When you do so, the pixel will be |
|
</font> <font color='#009900'>// ignored when computing gradients. |
|
</font> <font color='#0000FF'>static</font> <font color='#0000FF'>const</font> uint16_t label_to_ignore <font color='#5555FF'>=</font> std::numeric_limits<font color='#5555FF'><</font>uint16_t<font color='#5555FF'>></font>::<b><a name='max'></a>max</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; |
|
|
|
<font color='#009900'>// In semantic segmentation, 65535 classes ought to be enough for anybody. |
|
</font> <font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font>uint16_t<font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font>uint16_t<font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted class for each classified element. The number |
|
of possible output classes is sub.get_output().k(). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all values pointed to by truth are < sub.get_output().k() or are equal to label_to_ignore. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multiclass_log_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multiclass_log_per_pixel_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_multiclass_log_per_pixel_weighted_'></a>loss_multiclass_log_per_pixel_weighted_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the multiclass logistic |
|
regression loss (e.g. negative log-likelihood loss), which is appropriate |
|
for multiclass classification problems. It is basically just like |
|
loss_multiclass_log_per_pixel_ except that it lets you define per-pixel |
|
weights, which may be useful e.g. if you want to emphasize rare classes |
|
while training. (If the classification problem is difficult, a flat weight |
|
structure may lead the network to always predict the most common label, in |
|
particular if the degree of imbalance is high. To emphasize a certain |
|
class or classes, simply increase the weights of the corresponding pixels, |
|
relative to the weights of the other pixels.) |
|
|
|
Note that if you set the weight to 0 whenever a pixel's label is equal to |
|
loss_multiclass_log_per_pixel_::label_to_ignore, and to 1 otherwise, then |
|
you essentially get loss_multiclass_log_per_pixel_ as a special case. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> dlib::weighted_label<font color='#5555FF'><</font>uint16_t<font color='#5555FF'>></font> weighted_label; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font>weighted_label<font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font>uint16_t<font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output label is the predicted class for each classified element. The number |
|
of possible output classes is sub.get_output().k(). |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- all labels pointed to by truth are < sub.get_output().k(), or the corresponding weight |
|
is zero. |
|
!*/</font> |
|
|
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_multiclass_log_per_pixel_weighted <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_multiclass_log_per_pixel_weighted_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_per_pixel_'></a>loss_mean_squared_per_pixel_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, |
|
which is appropriate for regression problems. It is basically just like |
|
loss_mean_squared_multioutput_ except that it lets you define matrix or |
|
image outputs, instead of vector. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output labels are the predicted continuous variables. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().k() == 1 |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- for all idx such that 0 <= idx < sub.get_output().num_samples(): |
|
- sub.get_output().nr() == (*(truth + idx)).nr() |
|
- sub.get_output().nc() == (*(truth + idx)).nc() |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_mean_squared_per_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_mean_squared_per_pixel_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>template</font><font color='#5555FF'><</font><font color='#0000FF'><u>long</u></font> _num_channels<font color='#5555FF'>></font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_mean_squared_per_channel_and_pixel_'></a>loss_mean_squared_per_channel_and_pixel_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, it implements the mean squared loss, |
|
which is appropriate for regression problems. It is basically just like |
|
loss_mean_squared_per_pixel_ except that it computes the loss over all |
|
channels, not just the first one. |
|
!*/</font> |
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> std::array<font color='#5555FF'><</font>matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font>, _num_channels<font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> std::array<font color='#5555FF'><</font>matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font><font color='#5555FF'>></font>, _num_channels<font color='#5555FF'>></font> output_label_type; |
|
|
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.get_output().k() == _num_channels |
|
- sub.sample_expansion_factor() == 1 |
|
and the output labels are the predicted continuous variables. |
|
!*/</font> |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().k() == _num_channels |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- for all idx such that 0 <= idx < sub.get_output().num_samples(): |
|
- sub.get_output().nr() == (*(truth + idx)).nr() |
|
- sub.get_output().nc() == (*(truth + idx)).nc() |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'><u>long</u></font> num_channels, <font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_mean_squared_per_channel_and_pixel <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_mean_squared_per_channel_and_pixel_<font color='#5555FF'><</font>num_channels<font color='#5555FF'>></font>, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'>class</font> <b><a name='loss_dot_'></a>loss_dot_</b> |
|
<b>{</b> |
|
<font color='#009900'>/*! |
|
WHAT THIS OBJECT REPRESENTS |
|
This object implements the loss layer interface defined above by |
|
EXAMPLE_LOSS_LAYER_. In particular, selecting this loss means you want |
|
maximize the dot product between the output of a network and a set of |
|
training vectors. The loss is therefore the negative dot product. To be |
|
very specific, if X is the output vector of a network and Y is a training |
|
label (also a vector), then the loss for this training sample is: -dot(X,Y) |
|
!*/</font> |
|
|
|
<font color='#0000FF'>public</font>: |
|
|
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>></font> training_label_type; |
|
<font color='#0000FF'>typedef</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>float</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>></font> output_label_type; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> SUB_TYPE, |
|
<font color='#0000FF'>typename</font> label_iterator |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>void</u></font> <b><a name='to_label'></a>to_label</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
<font color='#0000FF'>const</font> SUB_TYPE<font color='#5555FF'>&</font> sub, |
|
label_iterator iter |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except |
|
it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
and the output labels are simply the final network outputs stuffed into a |
|
vector. To be very specific, the output is the following for all valid i: |
|
*(iter+i) == trans(rowm(mat(sub.get_output()),i)) |
|
!*/</font> |
|
|
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font> |
|
<font color='#0000FF'>typename</font> const_label_iterator, |
|
<font color='#0000FF'>typename</font> SUBNET |
|
<font color='#5555FF'>></font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='compute_loss_value_and_gradient'></a>compute_loss_value_and_gradient</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> input_tensor, |
|
const_label_iterator truth, |
|
SUBNET<font color='#5555FF'>&</font> sub |
|
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>; |
|
<font color='#009900'>/*! |
|
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient() |
|
except it has the additional calling requirements that: |
|
- sub.get_output().num_samples() == input_tensor.num_samples() |
|
- sub.sample_expansion_factor() == 1 |
|
- Let NETWORK_OUTPUT_DIMS == sub.get_output().size()/sub.get_output().num_samples() |
|
- for all idx such that 0 <= idx < sub.get_output().num_samples(): |
|
- NETWORK_OUTPUT_DIMS == (*(truth + idx)).size() |
|
!*/</font> |
|
<b>}</b>; |
|
|
|
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>></font> |
|
<font color='#0000FF'>using</font> loss_dot <font color='#5555FF'>=</font> add_loss_layer<font color='#5555FF'><</font>loss_dot_, SUBNET<font color='#5555FF'>></font>; |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<b>}</b> |
|
|
|
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_DNn_LOSS_ABSTRACT_H_ |
|
</font> |
|
|
|
</pre></body></html> |