// Copyright (C) 2018 Davis E. King (davis@dlib.net) | |
// License: Boost Software License See LICENSE.txt for the full license. | |
namespace dlib | |
{ | |
// ---------------------------------------------------------------------------------------- | |
class line | |
{ | |
/*! | |
WHAT THIS OBJECT REPRESENTS | |
This object represents a line in the 2D plane. The line is defined by two | |
points running through it, p1() and p2(). This object also includes a | |
unit normal vector that is perpendicular to the line. | |
!*/ | |
public: | |
line( | |
); | |
/*! | |
ensures | |
- p1(), p2(), and normal() are all the 0 vector. | |
!*/ | |
line( | |
const dpoint& a, | |
const dpoint& b | |
); | |
/*! | |
ensures | |
- #p1() == a | |
- #p2() == b | |
- #normal() == A vector normal to the line passing through points a and b. | |
In particular, it is given by: (a-b).cross(dlib::vector<double,3>(0,0,1)).normalize(). | |
Therefore, the normal vector is the vector (a-b) but unit normalized and rotated clockwise 90 degrees. | |
!*/ | |
template <typename T> | |
line( | |
const std::pair<vector<T,2>,vector<T,2>>& l | |
); | |
/*! | |
ensures | |
- #*this == line(l.first, l.second) | |
!*/ | |
const dpoint& p1( | |
) const; | |
/*! | |
ensures | |
- returns the first endpoint of the line. | |
!*/ | |
const dpoint& p2( | |
) const; | |
/*! | |
ensures | |
- returns the second endpoint of the line. | |
!*/ | |
const dpoint& normal( | |
) const; | |
/*! | |
ensures | |
- returns a unit vector that is normal to the line passing through p1() and p2(). | |
!*/ | |
}; | |
// ---------------------------------------------------------------------------------------- | |
template <typename U> | |
double signed_distance_to_line ( | |
const line& l, | |
const vector<U,2>& p | |
); | |
/*! | |
ensures | |
- returns how far p is from the line l. This is a signed distance. The sign | |
indicates which side of the line the point is on and the magnitude is the | |
distance. Moreover, the direction of positive sign is pointed to by the | |
vector l.normal(). | |
- To be specific, this routine returns dot(p-l.p1(), l.normal()) | |
!*/ | |
template <typename T, typename U> | |
double signed_distance_to_line ( | |
const std::pair<vector<T,2>,vector<T,2> >& l, | |
const vector<U,2>& p | |
); | |
/*! | |
ensures | |
- returns signed_distance_to_line(line(l),p); | |
!*/ | |
template <typename T, typename U> | |
double distance_to_line ( | |
const std::pair<vector<T,2>,vector<T,2> >& l, | |
const vector<U,2>& p | |
); | |
/*! | |
ensures | |
- returns abs(signed_distance_to_line(l,p)) | |
!*/ | |
template <typename U> | |
double distance_to_line ( | |
const line& l, | |
const vector<U,2>& p | |
); | |
/*! | |
ensures | |
- returns abs(signed_distance_to_line(l,p)) | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
line reverse( | |
const line& l | |
); | |
/*! | |
ensures | |
- returns line(l.p2(), l.p1()) | |
(i.e. returns a line object that represents the same line as l but with the | |
endpoints, and therefore, the normal vector flipped. This means that the | |
signed distance of operator() is also flipped). | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
dpoint intersect( | |
const line& a, | |
const line& b | |
); | |
/*! | |
ensures | |
- returns the point of intersection between lines a and b. If no such point | |
exists then this function returns a point with Inf values in it. | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
double angle_between_lines ( | |
const line& a, | |
const line& b | |
); | |
/*! | |
ensures | |
- returns the angle, in degrees, between the given lines. This is a number in | |
the range [0 90]. | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
template <typename T> | |
dpoint intersect( | |
const std::pair<vector<T,2>,vector<T,2>>& a, | |
const std::pair<vector<T,2>,vector<T,2>>& b | |
); | |
/*! | |
ensures | |
- returns intersect(line(a), line(b)) | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
template <typename T> | |
size_t count_points_on_side_of_line( | |
const line& l, | |
const dpoint& reference_point, | |
const std::vector<vector<T,2>>& pts, | |
const double& dist_thresh_min = 0, | |
const double& dist_thresh_max = std::numeric_limits<double>::infinity() | |
); | |
/*! | |
ensures | |
- Returns a count of how many points in pts have a distance from the line l | |
that is in the range [dist_thresh_min, dist_thresh_max]. This distance is a | |
signed value that indicates how far a point is from the line. Moreover, if | |
the point is on the same side as reference_point then the distance is | |
positive, otherwise it is negative. So for example, If this range is [0, | |
infinity] then this function counts how many points are on the same side of l | |
as reference_point. | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
template <typename T> | |
double count_points_between_lines( | |
const line& l1, | |
const line& l2, | |
const dpoint& reference_point, | |
const std::vector<vector<T,2>>& pts | |
); | |
/*! | |
ensures | |
- Counts and returns the number of points in pts that are between lines l1 and | |
l2. Since a pair of lines will, in the general case, divide the plane into 4 | |
regions, we identify the region of interest as the one that contains the | |
reference_point. Therefore, this function counts the number of points in pts | |
that appear in the same region as reference_point. | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
struct no_convex_quadrilateral : dlib::error | |
{ | |
/*! | |
WHAT THIS OBJECT REPRESENTS | |
This is the exception thrown by find_convex_quadrilateral() if the inputs | |
can't form a convex quadrilateral. | |
!*/ | |
no_convex_quadrilateral( | |
) : dlib::error("Lines given to find_convex_quadrilateral() don't form any convex quadrilateral.") | |
{} | |
}; | |
std::array<dpoint,4> find_convex_quadrilateral ( | |
const std::array<line,4>& lines | |
); | |
/*! | |
ensures | |
- Is there a set of 4 points, made up of the intersections of the given lines, | |
that forms a convex quadrilateral? If yes then this routine returns those 4 | |
points and if not throws no_convex_quadrilateral. | |
throws | |
- no_convex_quadrilateral | |
!*/ | |
// ---------------------------------------------------------------------------------------- | |
} | |