AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNn_LAYERS_H_
#define DLIB_DNn_LAYERS_H_
#include "layers_abstract.h"
#include "../cuda/tensor.h"
#include "core.h"
#include <iostream>
#include <string>
#include "../rand.h"
#include "../string.h"
#include "../cuda/tensor_tools.h"
#include "../vectorstream.h"
#include "utilities.h"
#include <sstream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
struct num_con_outputs
{
num_con_outputs(unsigned long n) : num_outputs(n) {}
unsigned long num_outputs;
};
template <
long _num_filters,
long _nr,
long _nc,
int _stride_y,
int _stride_x,
int _padding_y = _stride_y!=1? 0 : _nr/2,
int _padding_x = _stride_x!=1? 0 : _nc/2
>
class con_
{
public:
static_assert(_num_filters > 0, "The number of filters must be > 0");
static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
static_assert(_stride_y > 0, "The filter stride must be > 0");
static_assert(_stride_x > 0, "The filter stride must be > 0");
static_assert(_nr==0 || (0 <= _padding_y && _padding_y < _nr), "The padding must be smaller than the filter size.");
static_assert(_nc==0 || (0 <= _padding_x && _padding_x < _nc), "The padding must be smaller than the filter size.");
static_assert(_nr!=0 || 0 == _padding_y, "If _nr==0 then the padding must be set to 0 as well.");
static_assert(_nc!=0 || 0 == _padding_x, "If _nr==0 then the padding must be set to 0 as well.");
con_(
num_con_outputs o
) :
learning_rate_multiplier(1),
weight_decay_multiplier(1),
bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(0),
num_filters_(o.num_outputs),
padding_y_(_padding_y),
padding_x_(_padding_x),
use_bias(true)
{
DLIB_CASSERT(num_filters_ > 0);
}
con_() : con_(num_con_outputs(_num_filters)) {}
long num_filters() const { return num_filters_; }
long nr() const
{
if (_nr==0)
return filters.nr();
else
return _nr;
}
long nc() const
{
if (_nc==0)
return filters.nc();
else
return _nc;
}
long stride_y() const { return _stride_y; }
long stride_x() const { return _stride_x; }
long padding_y() const { return padding_y_; }
long padding_x() const { return padding_x_; }
void set_num_filters(long num)
{
DLIB_CASSERT(num > 0);
if (num != num_filters_)
{
DLIB_CASSERT(get_layer_params().size() == 0,
"You can't change the number of filters in con_ if the parameter tensor has already been allocated.");
num_filters_ = num;
}
}
double get_learning_rate_multiplier () const { return learning_rate_multiplier; }
double get_weight_decay_multiplier () const { return weight_decay_multiplier; }
void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
void set_weight_decay_multiplier(double val) { weight_decay_multiplier = val; }
double get_bias_learning_rate_multiplier () const { return bias_learning_rate_multiplier; }
double get_bias_weight_decay_multiplier () const { return bias_weight_decay_multiplier; }
void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
void set_bias_weight_decay_multiplier(double val) { bias_weight_decay_multiplier = val; }
void disable_bias() { use_bias = false; }
bool bias_is_disabled() const { return !use_bias; }
inline dpoint map_input_to_output (
dpoint p
) const
{
p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
return p;
}
inline dpoint map_output_to_input (
dpoint p
) const
{
p.x() = p.x()*stride_x() - padding_x() + nc()/2;
p.y() = p.y()*stride_y() - padding_y() + nr()/2;
return p;
}
con_ (
const con_& item
) :
params(item.params),
filters(item.filters),
biases(item.biases),
learning_rate_multiplier(item.learning_rate_multiplier),
weight_decay_multiplier(item.weight_decay_multiplier),
bias_learning_rate_multiplier(item.bias_learning_rate_multiplier),
bias_weight_decay_multiplier(item.bias_weight_decay_multiplier),
num_filters_(item.num_filters_),
padding_y_(item.padding_y_),
padding_x_(item.padding_x_),
use_bias(item.use_bias)
{
// this->conv is non-copyable and basically stateless, so we have to write our
// own copy to avoid trying to copy it and getting an error.
}
con_& operator= (
const con_& item
)
{
if (this == &item)
return *this;
// this->conv is non-copyable and basically stateless, so we have to write our
// own copy to avoid trying to copy it and getting an error.
params = item.params;
filters = item.filters;
biases = item.biases;
padding_y_ = item.padding_y_;
padding_x_ = item.padding_x_;
learning_rate_multiplier = item.learning_rate_multiplier;
weight_decay_multiplier = item.weight_decay_multiplier;
bias_learning_rate_multiplier = item.bias_learning_rate_multiplier;
bias_weight_decay_multiplier = item.bias_weight_decay_multiplier;
num_filters_ = item.num_filters_;
use_bias = item.use_bias;
return *this;
}
template <typename SUBNET>
void setup (const SUBNET& sub)
{
const long filt_nr = _nr!=0 ? _nr : sub.get_output().nr();
const long filt_nc = _nc!=0 ? _nc : sub.get_output().nc();
long num_inputs = filt_nr*filt_nc*sub.get_output().k();
long num_outputs = num_filters_;
// allocate params for the filters and also for the filter bias values.
params.set_size(num_inputs*num_filters_ + static_cast<int>(use_bias) * num_filters_);
dlib::rand rnd(std::rand());
randomize_parameters(params, num_inputs+num_outputs, rnd);
filters = alias_tensor(num_filters_, sub.get_output().k(), filt_nr, filt_nc);
if (use_bias)
{
biases = alias_tensor(1,num_filters_);
// set the initial bias values to zero
biases(params,filters.size()) = 0;
}
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
conv.setup(sub.get_output(),
filters(params,0),
_stride_y,
_stride_x,
padding_y_,
padding_x_);
conv(false, output,
sub.get_output(),
filters(params,0));
if (use_bias)
{
tt::add(1,output,1,biases(params,filters.size()));
}
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{
conv.get_gradient_for_data (true, gradient_input, filters(params,0), sub.get_gradient_input());
// no dpoint computing the parameter gradients if they won't be used.
if (learning_rate_multiplier != 0)
{
auto filt = filters(params_grad,0);
conv.get_gradient_for_filters (false, gradient_input, sub.get_output(), filt);
if (use_bias)
{
auto b = biases(params_grad, filters.size());
tt::assign_conv_bias_gradient(b, gradient_input);
}
}
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const con_& item, std::ostream& out)
{
serialize("con_5", out);
serialize(item.params, out);
serialize(item.num_filters_, out);
serialize(_nr, out);
serialize(_nc, out);
serialize(_stride_y, out);
serialize(_stride_x, out);
serialize(item.padding_y_, out);
serialize(item.padding_x_, out);
serialize(item.filters, out);
serialize(item.biases, out);
serialize(item.learning_rate_multiplier, out);
serialize(item.weight_decay_multiplier, out);
serialize(item.bias_learning_rate_multiplier, out);
serialize(item.bias_weight_decay_multiplier, out);
serialize(item.use_bias, out);
}
friend void deserialize(con_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
long nr;
long nc;
int stride_y;
int stride_x;
if (version == "con_4" || version == "con_5")
{
deserialize(item.params, in);
deserialize(item.num_filters_, in);
deserialize(nr, in);
deserialize(nc, in);
deserialize(stride_y, in);
deserialize(stride_x, in);
deserialize(item.padding_y_, in);
deserialize(item.padding_x_, in);
deserialize(item.filters, in);
deserialize(item.biases, in);
deserialize(item.learning_rate_multiplier, in);
deserialize(item.weight_decay_multiplier, in);
deserialize(item.bias_learning_rate_multiplier, in);
deserialize(item.bias_weight_decay_multiplier, in);
if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::con_");
if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::con_");
if (nr != _nr) throw serialization_error("Wrong nr found while deserializing dlib::con_");
if (nc != _nc) throw serialization_error("Wrong nc found while deserializing dlib::con_");
if (stride_y != _stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::con_");
if (stride_x != _stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::con_");
if (version == "con_5")
{
deserialize(item.use_bias, in);
}
}
else
{
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::con_.");
}
}
friend std::ostream& operator<<(std::ostream& out, const con_& item)
{
out << "con\t ("
<< "num_filters="<<item.num_filters_
<< ", nr="<<item.nr()
<< ", nc="<<item.nc()
<< ", stride_y="<<_stride_y
<< ", stride_x="<<_stride_x
<< ", padding_y="<<item.padding_y_
<< ", padding_x="<<item.padding_x_
<< ")";
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
if (item.use_bias)
{
out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
}
else
{
out << " use_bias=false";
}
return out;
}
friend void to_xml(const con_& item, std::ostream& out)
{
out << "<con"
<< " num_filters='"<<item.num_filters_<<"'"
<< " nr='"<<item.nr()<<"'"
<< " nc='"<<item.nc()<<"'"
<< " stride_y='"<<_stride_y<<"'"
<< " stride_x='"<<_stride_x<<"'"
<< " padding_y='"<<item.padding_y_<<"'"
<< " padding_x='"<<item.padding_x_<<"'"
<< " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
<< " weight_decay_mult='"<<item.weight_decay_multiplier<<"'"
<< " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'"
<< " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'"
<< " use_bias='"<<(item.use_bias?"true":"false")<<"'>\n";
out << mat(item.params);
out << "</con>";
}
private:
resizable_tensor params;
alias_tensor filters, biases;
tt::tensor_conv conv;
double learning_rate_multiplier;
double weight_decay_multiplier;
double bias_learning_rate_multiplier;
double bias_weight_decay_multiplier;
long num_filters_;
// These are here only because older versions of con (which you might encounter
// serialized to disk) used different padding settings.
int padding_y_;
int padding_x_;
bool use_bias;
};
template <
long num_filters,
long nr,
long nc,
int stride_y,
int stride_x,
typename SUBNET
>
using con = add_layer<con_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
long _num_filters,
long _nr,
long _nc,
int _stride_y,
int _stride_x,
int _padding_y = _stride_y!=1? 0 : _nr/2,
int _padding_x = _stride_x!=1? 0 : _nc/2
>
class cont_
{
public:
static_assert(_num_filters > 0, "The number of filters must be > 0");
static_assert(_nr > 0, "The number of rows in a filter must be > 0");
static_assert(_nc > 0, "The number of columns in a filter must be > 0");
static_assert(_stride_y > 0, "The filter stride must be > 0");
static_assert(_stride_x > 0, "The filter stride must be > 0");
static_assert(0 <= _padding_y && _padding_y < _nr, "The padding must be smaller than the filter size.");
static_assert(0 <= _padding_x && _padding_x < _nc, "The padding must be smaller than the filter size.");
cont_(
num_con_outputs o
) :
learning_rate_multiplier(1),
weight_decay_multiplier(1),
bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(0),
num_filters_(o.num_outputs),
padding_y_(_padding_y),
padding_x_(_padding_x),
use_bias(true)
{
DLIB_CASSERT(num_filters_ > 0);
}
cont_() : cont_(num_con_outputs(_num_filters)) {}
long num_filters() const { return num_filters_; }
long nr() const { return _nr; }
long nc() const { return _nc; }
long stride_y() const { return _stride_y; }
long stride_x() const { return _stride_x; }
long padding_y() const { return padding_y_; }
long padding_x() const { return padding_x_; }
void set_num_filters(long num)
{
DLIB_CASSERT(num > 0);
if (num != num_filters_)
{
DLIB_CASSERT(get_layer_params().size() == 0,
"You can't change the number of filters in cont_ if the parameter tensor has already been allocated.");
num_filters_ = num;
}
}
double get_learning_rate_multiplier () const { return learning_rate_multiplier; }
double get_weight_decay_multiplier () const { return weight_decay_multiplier; }
void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
void set_weight_decay_multiplier(double val) { weight_decay_multiplier = val; }
double get_bias_learning_rate_multiplier () const { return bias_learning_rate_multiplier; }
double get_bias_weight_decay_multiplier () const { return bias_weight_decay_multiplier; }
void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
void set_bias_weight_decay_multiplier(double val) { bias_weight_decay_multiplier = val; }
void disable_bias() { use_bias = false; }
bool bias_is_disabled() const { return !use_bias; }
inline dpoint map_output_to_input (
dpoint p
) const
{
p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
return p;
}
inline dpoint map_input_to_output (
dpoint p
) const
{
p.x() = p.x()*stride_x() - padding_x() + nc()/2;
p.y() = p.y()*stride_y() - padding_y() + nr()/2;
return p;
}
cont_ (
const cont_& item
) :
params(item.params),
filters(item.filters),
biases(item.biases),
learning_rate_multiplier(item.learning_rate_multiplier),
weight_decay_multiplier(item.weight_decay_multiplier),
bias_learning_rate_multiplier(item.bias_learning_rate_multiplier),
bias_weight_decay_multiplier(item.bias_weight_decay_multiplier),
num_filters_(item.num_filters_),
padding_y_(item.padding_y_),
padding_x_(item.padding_x_),
use_bias(item.use_bias)
{
// this->conv is non-copyable and basically stateless, so we have to write our
// own copy to avoid trying to copy it and getting an error.
}
cont_& operator= (
const cont_& item
)
{
if (this == &item)
return *this;
// this->conv is non-copyable and basically stateless, so we have to write our
// own copy to avoid trying to copy it and getting an error.
params = item.params;
filters = item.filters;
biases = item.biases;
padding_y_ = item.padding_y_;
padding_x_ = item.padding_x_;
learning_rate_multiplier = item.learning_rate_multiplier;
weight_decay_multiplier = item.weight_decay_multiplier;
bias_learning_rate_multiplier = item.bias_learning_rate_multiplier;
bias_weight_decay_multiplier = item.bias_weight_decay_multiplier;
num_filters_ = item.num_filters_;
use_bias = item.use_bias;
return *this;
}
template <typename SUBNET>
void setup (const SUBNET& sub)
{
long num_inputs = _nr*_nc*sub.get_output().k();
long num_outputs = num_filters_;
// allocate params for the filters and also for the filter bias values.
params.set_size(num_inputs*num_filters_ + num_filters_ * static_cast<int>(use_bias));
dlib::rand rnd(std::rand());
randomize_parameters(params, num_inputs+num_outputs, rnd);
filters = alias_tensor(sub.get_output().k(), num_filters_, _nr, _nc);
if (use_bias)
{
biases = alias_tensor(1,num_filters_);
// set the initial bias values to zero
biases(params,filters.size()) = 0;
}
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto filt = filters(params,0);
unsigned int gnr = _stride_y * (sub.get_output().nr() - 1) + filt.nr() - 2 * padding_y_;
unsigned int gnc = _stride_x * (sub.get_output().nc() - 1) + filt.nc() - 2 * padding_x_;
unsigned int gnsamps = sub.get_output().num_samples();
unsigned int gk = filt.k();
output.set_size(gnsamps,gk,gnr,gnc);
conv.setup(output,filt,_stride_y,_stride_x,padding_y_,padding_x_);
conv.get_gradient_for_data(false, sub.get_output(),filt,output);
if (use_bias)
{
tt::add(1,output,1,biases(params,filters.size()));
}
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{
auto filt = filters(params,0);
conv(true, sub.get_gradient_input(),gradient_input, filt);
// no point computing the parameter gradients if they won't be used.
if (learning_rate_multiplier != 0)
{
auto filt = filters(params_grad,0);
conv.get_gradient_for_filters (false, sub.get_output(),gradient_input, filt);
if (use_bias)
{
auto b = biases(params_grad, filters.size());
tt::assign_conv_bias_gradient(b, gradient_input);
}
}
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const cont_& item, std::ostream& out)
{
serialize("cont_2", out);
serialize(item.params, out);
serialize(item.num_filters_, out);
serialize(_nr, out);
serialize(_nc, out);
serialize(_stride_y, out);
serialize(_stride_x, out);
serialize(item.padding_y_, out);
serialize(item.padding_x_, out);
serialize(item.filters, out);
serialize(item.biases, out);
serialize(item.learning_rate_multiplier, out);
serialize(item.weight_decay_multiplier, out);
serialize(item.bias_learning_rate_multiplier, out);
serialize(item.bias_weight_decay_multiplier, out);
serialize(item.use_bias, out);
}
friend void deserialize(cont_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
long nr;
long nc;
int stride_y;
int stride_x;
if (version == "cont_1" || version == "cont_2")
{
deserialize(item.params, in);
deserialize(item.num_filters_, in);
deserialize(nr, in);
deserialize(nc, in);
deserialize(stride_y, in);
deserialize(stride_x, in);
deserialize(item.padding_y_, in);
deserialize(item.padding_x_, in);
deserialize(item.filters, in);
deserialize(item.biases, in);
deserialize(item.learning_rate_multiplier, in);
deserialize(item.weight_decay_multiplier, in);
deserialize(item.bias_learning_rate_multiplier, in);
deserialize(item.bias_weight_decay_multiplier, in);
if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::con_");
if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::con_");
if (nr != _nr) throw serialization_error("Wrong nr found while deserializing dlib::con_");
if (nc != _nc) throw serialization_error("Wrong nc found while deserializing dlib::con_");
if (stride_y != _stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::con_");
if (stride_x != _stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::con_");
if (version == "cont_2")
{
deserialize(item.use_bias, in);
}
}
else
{
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::con_.");
}
}
friend std::ostream& operator<<(std::ostream& out, const cont_& item)
{
out << "cont\t ("
<< "num_filters="<<item.num_filters_
<< ", nr="<<_nr
<< ", nc="<<_nc
<< ", stride_y="<<_stride_y
<< ", stride_x="<<_stride_x
<< ", padding_y="<<item.padding_y_
<< ", padding_x="<<item.padding_x_
<< ")";
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
if (item.use_bias)
{
out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
}
else
{
out << " use_bias=false";
}
return out;
}
friend void to_xml(const cont_& item, std::ostream& out)
{
out << "<cont"
<< " num_filters='"<<item.num_filters_<<"'"
<< " nr='"<<_nr<<"'"
<< " nc='"<<_nc<<"'"
<< " stride_y='"<<_stride_y<<"'"
<< " stride_x='"<<_stride_x<<"'"
<< " padding_y='"<<item.padding_y_<<"'"
<< " padding_x='"<<item.padding_x_<<"'"
<< " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
<< " weight_decay_mult='"<<item.weight_decay_multiplier<<"'"
<< " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'"
<< " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'"
<< " use_bias='"<<(item.use_bias?"true":"false")<<"'>\n";
out << mat(item.params);
out << "</cont>";
}
private:
resizable_tensor params;
alias_tensor filters, biases;
tt::tensor_conv conv;
double learning_rate_multiplier;
double weight_decay_multiplier;
double bias_learning_rate_multiplier;
double bias_weight_decay_multiplier;
long num_filters_;
int padding_y_;
int padding_x_;
bool use_bias;
};
template <
long num_filters,
long nr,
long nc,
int stride_y,
int stride_x,
typename SUBNET
>
using cont = add_layer<cont_<num_filters,nr,nc,stride_y,stride_x>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
int scale_y,
int scale_x
>
class upsample_
{
public:
static_assert(scale_y >= 1, "upsampling scale factor can't be less than 1.");
static_assert(scale_x >= 1, "upsampling scale factor can't be less than 1.");
upsample_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
output.set_size(
sub.get_output().num_samples(),
sub.get_output().k(),
scale_y*sub.get_output().nr(),
scale_x*sub.get_output().nc());
tt::resize_bilinear(output, sub.get_output());
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
tt::resize_bilinear_gradient(sub.get_gradient_input(), gradient_input);
}
inline dpoint map_input_to_output (dpoint p) const
{
p.x() = p.x()*scale_x;
p.y() = p.y()*scale_y;
return p;
}
inline dpoint map_output_to_input (dpoint p) const
{
p.x() = p.x()/scale_x;
p.y() = p.y()/scale_y;
return p;
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const upsample_& /*item*/, std::ostream& out)
{
serialize("upsample_", out);
serialize(scale_y, out);
serialize(scale_x, out);
}
friend void deserialize(upsample_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "upsample_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::upsample_.");
int _scale_y;
int _scale_x;
deserialize(_scale_y, in);
deserialize(_scale_x, in);
if (_scale_y != scale_y || _scale_x != scale_x)
throw serialization_error("Wrong scale found while deserializing dlib::upsample_");
}
friend std::ostream& operator<<(std::ostream& out, const upsample_& /*item*/)
{
out << "upsample\t ("
<< "scale_y="<<scale_y
<< ", scale_x="<<scale_x
<< ")";
return out;
}
friend void to_xml(const upsample_& /*item*/, std::ostream& out)
{
out << "<upsample"
<< " scale_y='"<<scale_y<<"'"
<< " scale_x='"<<scale_x<<"'/>\n";
}
private:
resizable_tensor params;
};
template <
int scale,
typename SUBNET
>
using upsample = add_layer<upsample_<scale,scale>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
long NR_,
long NC_
>
class resize_to_
{
public:
static_assert(NR_ >= 1, "NR resize parameter can't be less than 1.");
static_assert(NC_ >= 1, "NC resize parameter can't be less than 1.");
resize_to_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
scale_y = (double)NR_/(double)sub.get_output().nr();
scale_x = (double)NC_/(double)sub.get_output().nc();
output.set_size(
sub.get_output().num_samples(),
sub.get_output().k(),
NR_,
NC_);
tt::resize_bilinear(output, sub.get_output());
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
tt::resize_bilinear_gradient(sub.get_gradient_input(), gradient_input);
}
inline dpoint map_input_to_output (dpoint p) const
{
p.x() = p.x()*scale_x;
p.y() = p.y()*scale_y;
return p;
}
inline dpoint map_output_to_input (dpoint p) const
{
p.x() = p.x()/scale_x;
p.y() = p.y()/scale_y;
return p;
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const resize_to_& item, std::ostream& out)
{
serialize("resize_to_", out);
serialize(NR_, out);
serialize(NC_, out);
serialize(item.scale_y, out);
serialize(item.scale_x, out);
}
friend void deserialize(resize_to_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "resize_to_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::resize_to_.");
long _nr;
long _nc;
deserialize(_nr, in);
deserialize(_nc, in);
deserialize(item.scale_y, in);
deserialize(item.scale_x, in);
if (_nr != NR_ || _nc != NC_)
throw serialization_error("Wrong size found while deserializing dlib::resize_to_");
}
friend std::ostream& operator<<(std::ostream& out, const resize_to_& /*item*/)
{
out << "resize_to ("
<< "nr=" << NR_
<< ", nc=" << NC_
<< ")";
return out;
}
friend void to_xml(const resize_to_& /*item*/, std::ostream& out)
{
out << "<resize_to";
out << " nr='" << NR_ << "'" ;
out << " nc='" << NC_ << "'/>\n";
}
private:
resizable_tensor params;
double scale_y;
double scale_x;
}; // end of class resize_to_
template <
long NR,
long NC,
typename SUBNET
>
using resize_to = add_layer<resize_to_<NR,NC>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
long _nr,
long _nc,
int _stride_y,
int _stride_x,
int _padding_y = _stride_y!=1? 0 : _nr/2,
int _padding_x = _stride_x!=1? 0 : _nc/2
>
class max_pool_
{
static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
static_assert(_stride_y > 0, "The filter stride must be > 0");
static_assert(_stride_x > 0, "The filter stride must be > 0");
static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)),
"The padding must be smaller than the filter size, unless the filters size is 0.");
static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)),
"The padding must be smaller than the filter size, unless the filters size is 0.");
public:
max_pool_(
) :
padding_y_(_padding_y),
padding_x_(_padding_x)
{}
long nr() const { return _nr; }
long nc() const { return _nc; }
long stride_y() const { return _stride_y; }
long stride_x() const { return _stride_x; }
long padding_y() const { return padding_y_; }
long padding_x() const { return padding_x_; }
inline dpoint map_input_to_output (
dpoint p
) const
{
p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
return p;
}
inline dpoint map_output_to_input (
dpoint p
) const
{
p.x() = p.x()*stride_x() - padding_x() + nc()/2;
p.y() = p.y()*stride_y() - padding_y() + nr()/2;
return p;
}
max_pool_ (
const max_pool_& item
) :
padding_y_(item.padding_y_),
padding_x_(item.padding_x_)
{
// this->mp is non-copyable so we have to write our own copy to avoid trying to
// copy it and getting an error.
}
max_pool_& operator= (
const max_pool_& item
)
{
if (this == &item)
return *this;
padding_y_ = item.padding_y_;
padding_x_ = item.padding_x_;
// this->mp is non-copyable so we have to write our own copy to avoid trying to
// copy it and getting an error.
return *this;
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(),
_nc!=0?_nc:sub.get_output().nc(),
_stride_y, _stride_x, padding_y_, padding_x_);
mp(output, sub.get_output());
}
template <typename SUBNET>
void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
mp.setup_max_pooling(_nr!=0?_nr:sub.get_output().nr(),
_nc!=0?_nc:sub.get_output().nc(),
_stride_y, _stride_x, padding_y_, padding_x_);
mp.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const max_pool_& item, std::ostream& out)
{
serialize("max_pool_2", out);
serialize(_nr, out);
serialize(_nc, out);
serialize(_stride_y, out);
serialize(_stride_x, out);
serialize(item.padding_y_, out);
serialize(item.padding_x_, out);
}
friend void deserialize(max_pool_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
long nr;
long nc;
int stride_y;
int stride_x;
if (version == "max_pool_2")
{
deserialize(nr, in);
deserialize(nc, in);
deserialize(stride_y, in);
deserialize(stride_x, in);
deserialize(item.padding_y_, in);
deserialize(item.padding_x_, in);
}
else
{
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::max_pool_.");
}
if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::max_pool_");
if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::max_pool_");
if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::max_pool_");
if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::max_pool_");
if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::max_pool_");
if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::max_pool_");
}
friend std::ostream& operator<<(std::ostream& out, const max_pool_& item)
{
out << "max_pool ("
<< "nr="<<_nr
<< ", nc="<<_nc
<< ", stride_y="<<_stride_y
<< ", stride_x="<<_stride_x
<< ", padding_y="<<item.padding_y_
<< ", padding_x="<<item.padding_x_
<< ")";
return out;
}
friend void to_xml(const max_pool_& item, std::ostream& out)
{
out << "<max_pool"
<< " nr='"<<_nr<<"'"
<< " nc='"<<_nc<<"'"
<< " stride_y='"<<_stride_y<<"'"
<< " stride_x='"<<_stride_x<<"'"
<< " padding_y='"<<item.padding_y_<<"'"
<< " padding_x='"<<item.padding_x_<<"'"
<< "/>\n";
}
private:
tt::pooling mp;
resizable_tensor params;
int padding_y_;
int padding_x_;
};
template <
long nr,
long nc,
int stride_y,
int stride_x,
typename SUBNET
>
using max_pool = add_layer<max_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
template <
typename SUBNET
>
using max_pool_everything = add_layer<max_pool_<0,0,1,1>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
long _nr,
long _nc,
int _stride_y,
int _stride_x,
int _padding_y = _stride_y!=1? 0 : _nr/2,
int _padding_x = _stride_x!=1? 0 : _nc/2
>
class avg_pool_
{
public:
static_assert(_nr >= 0, "The number of rows in a filter must be >= 0");
static_assert(_nc >= 0, "The number of columns in a filter must be >= 0");
static_assert(_stride_y > 0, "The filter stride must be > 0");
static_assert(_stride_x > 0, "The filter stride must be > 0");
static_assert(0 <= _padding_y && ((_nr==0 && _padding_y == 0) || (_nr!=0 && _padding_y < _nr)),
"The padding must be smaller than the filter size, unless the filters size is 0.");
static_assert(0 <= _padding_x && ((_nc==0 && _padding_x == 0) || (_nc!=0 && _padding_x < _nc)),
"The padding must be smaller than the filter size, unless the filters size is 0.");
avg_pool_(
) :
padding_y_(_padding_y),
padding_x_(_padding_x)
{}
long nr() const { return _nr; }
long nc() const { return _nc; }
long stride_y() const { return _stride_y; }
long stride_x() const { return _stride_x; }
long padding_y() const { return padding_y_; }
long padding_x() const { return padding_x_; }
inline dpoint map_input_to_output (
dpoint p
) const
{
p.x() = (p.x()+padding_x()-nc()/2)/stride_x();
p.y() = (p.y()+padding_y()-nr()/2)/stride_y();
return p;
}
inline dpoint map_output_to_input (
dpoint p
) const
{
p.x() = p.x()*stride_x() - padding_x() + nc()/2;
p.y() = p.y()*stride_y() - padding_y() + nr()/2;
return p;
}
avg_pool_ (
const avg_pool_& item
) :
padding_y_(item.padding_y_),
padding_x_(item.padding_x_)
{
// this->ap is non-copyable so we have to write our own copy to avoid trying to
// copy it and getting an error.
}
avg_pool_& operator= (
const avg_pool_& item
)
{
if (this == &item)
return *this;
padding_y_ = item.padding_y_;
padding_x_ = item.padding_x_;
// this->ap is non-copyable so we have to write our own copy to avoid trying to
// copy it and getting an error.
return *this;
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(),
_nc!=0?_nc:sub.get_output().nc(),
_stride_y, _stride_x, padding_y_, padding_x_);
ap(output, sub.get_output());
}
template <typename SUBNET>
void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
ap.setup_avg_pooling(_nr!=0?_nr:sub.get_output().nr(),
_nc!=0?_nc:sub.get_output().nc(),
_stride_y, _stride_x, padding_y_, padding_x_);
ap.get_gradient(gradient_input, computed_output, sub.get_output(), sub.get_gradient_input());
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const avg_pool_& item, std::ostream& out)
{
serialize("avg_pool_2", out);
serialize(_nr, out);
serialize(_nc, out);
serialize(_stride_y, out);
serialize(_stride_x, out);
serialize(item.padding_y_, out);
serialize(item.padding_x_, out);
}
friend void deserialize(avg_pool_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
long nr;
long nc;
int stride_y;
int stride_x;
if (version == "avg_pool_2")
{
deserialize(nr, in);
deserialize(nc, in);
deserialize(stride_y, in);
deserialize(stride_x, in);
deserialize(item.padding_y_, in);
deserialize(item.padding_x_, in);
}
else
{
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::avg_pool_.");
}
if (item.padding_y_ != _padding_y) throw serialization_error("Wrong padding_y found while deserializing dlib::avg_pool_");
if (item.padding_x_ != _padding_x) throw serialization_error("Wrong padding_x found while deserializing dlib::avg_pool_");
if (_nr != nr) throw serialization_error("Wrong nr found while deserializing dlib::avg_pool_");
if (_nc != nc) throw serialization_error("Wrong nc found while deserializing dlib::avg_pool_");
if (_stride_y != stride_y) throw serialization_error("Wrong stride_y found while deserializing dlib::avg_pool_");
if (_stride_x != stride_x) throw serialization_error("Wrong stride_x found while deserializing dlib::avg_pool_");
}
friend std::ostream& operator<<(std::ostream& out, const avg_pool_& item)
{
out << "avg_pool ("
<< "nr="<<_nr
<< ", nc="<<_nc
<< ", stride_y="<<_stride_y
<< ", stride_x="<<_stride_x
<< ", padding_y="<<item.padding_y_
<< ", padding_x="<<item.padding_x_
<< ")";
return out;
}
friend void to_xml(const avg_pool_& item, std::ostream& out)
{
out << "<avg_pool"
<< " nr='"<<_nr<<"'"
<< " nc='"<<_nc<<"'"
<< " stride_y='"<<_stride_y<<"'"
<< " stride_x='"<<_stride_x<<"'"
<< " padding_y='"<<item.padding_y_<<"'"
<< " padding_x='"<<item.padding_x_<<"'"
<< "/>\n";
}
private:
tt::pooling ap;
resizable_tensor params;
int padding_y_;
int padding_x_;
};
template <
long nr,
long nc,
int stride_y,
int stride_x,
typename SUBNET
>
using avg_pool = add_layer<avg_pool_<nr,nc,stride_y,stride_x>, SUBNET>;
template <
typename SUBNET
>
using avg_pool_everything = add_layer<avg_pool_<0,0,1,1>, SUBNET>;
// ----------------------------------------------------------------------------------------
const double DEFAULT_LAYER_NORM_EPS = 1e-5;
class layer_norm_
{
public:
explicit layer_norm_(
double eps_ = DEFAULT_LAYER_NORM_EPS
) :
learning_rate_multiplier(1),
weight_decay_multiplier(0),
bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(1),
eps(eps_)
{
}
double get_eps() const { return eps; }
double get_learning_rate_multiplier () const { return learning_rate_multiplier; }
double get_weight_decay_multiplier () const { return weight_decay_multiplier; }
void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
void set_weight_decay_multiplier(double val) { weight_decay_multiplier = val; }
double get_bias_learning_rate_multiplier () const { return bias_learning_rate_multiplier; }
double get_bias_weight_decay_multiplier () const { return bias_weight_decay_multiplier; }
void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
void set_bias_weight_decay_multiplier(double val) { bias_weight_decay_multiplier = val; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
template <typename SUBNET>
void setup (const SUBNET& sub)
{
gamma = alias_tensor(sub.get_output().num_samples());
beta = gamma;
params.set_size(gamma.size()+beta.size());
gamma(params,0) = 1;
beta(params,gamma.size()) = 0;
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto g = gamma(params,0);
auto b = beta(params,gamma.size());
tt::layer_normalize(eps, output, means, invstds, sub.get_output(), g, b);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{
auto g = gamma(params, 0);
auto g_grad = gamma(params_grad, 0);
auto b_grad = beta(params_grad, gamma.size());
tt::layer_normalize_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad);
}
const tensor& get_layer_params() const { return params; };
tensor& get_layer_params() { return params; };
friend void serialize(const layer_norm_& item, std::ostream& out)
{
serialize("layer_norm_", out);
serialize(item.params, out);
serialize(item.gamma, out);
serialize(item.beta, out);
serialize(item.means, out);
serialize(item.invstds, out);
serialize(item.learning_rate_multiplier, out);
serialize(item.weight_decay_multiplier, out);
serialize(item.bias_learning_rate_multiplier, out);
serialize(item.bias_weight_decay_multiplier, out);
serialize(item.eps, out);
}
friend void deserialize(layer_norm_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "layer_norm_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::layer_norm_.");
deserialize(item.params, in);
deserialize(item.gamma, in);
deserialize(item.beta, in);
deserialize(item.means, in);
deserialize(item.invstds, in);
deserialize(item.learning_rate_multiplier, in);
deserialize(item.weight_decay_multiplier, in);
deserialize(item.bias_learning_rate_multiplier, in);
deserialize(item.bias_weight_decay_multiplier, in);
deserialize(item.eps, in);
}
friend std::ostream& operator<<(std::ostream& out, const layer_norm_& item)
{
out << "layer_norm";
out << " eps="<<item.eps;
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
return out;
}
friend void to_xml(const layer_norm_& item, std::ostream& out)
{
out << "layer_norm";
out << " eps='"<<item.eps<<"'";
out << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'";
out << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'";
out << " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'";
out << " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'";
out << ">\n";
out << mat(item.params);
out << "</layer_norm>\n";
}
private:
resizable_tensor params;
alias_tensor gamma, beta;
resizable_tensor means, invstds;
double learning_rate_multiplier;
double weight_decay_multiplier;
double bias_learning_rate_multiplier;
double bias_weight_decay_multiplier;
double eps;
};
template <typename SUBNET>
using layer_norm = add_layer<layer_norm_, SUBNET>;
// ----------------------------------------------------------------------------------------
enum layer_mode
{
CONV_MODE = 0,
FC_MODE = 1
};
const double DEFAULT_BATCH_NORM_EPS = 0.0001;
template <
layer_mode mode
>
class bn_
{
public:
explicit bn_(
unsigned long window_size,
double eps_ = DEFAULT_BATCH_NORM_EPS
) :
num_updates(0),
running_stats_window_size(window_size),
learning_rate_multiplier(1),
weight_decay_multiplier(0),
bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(1),
eps(eps_)
{
DLIB_CASSERT(window_size > 0, "The batch normalization running stats window size can't be 0.");
}
bn_() : bn_(100) {}
layer_mode get_mode() const { return mode; }
unsigned long get_running_stats_window_size () const { return running_stats_window_size; }
void set_running_stats_window_size (unsigned long new_window_size )
{
DLIB_CASSERT(new_window_size > 0, "The batch normalization running stats window size can't be 0.");
running_stats_window_size = new_window_size;
}
double get_eps() const { return eps; }
double get_learning_rate_multiplier () const { return learning_rate_multiplier; }
double get_weight_decay_multiplier () const { return weight_decay_multiplier; }
void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
void set_weight_decay_multiplier(double val) { weight_decay_multiplier = val; }
double get_bias_learning_rate_multiplier () const { return bias_learning_rate_multiplier; }
double get_bias_weight_decay_multiplier () const { return bias_weight_decay_multiplier; }
void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
void set_bias_weight_decay_multiplier(double val) { bias_weight_decay_multiplier = val; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
template <typename SUBNET>
void setup (const SUBNET& sub)
{
if (mode == FC_MODE)
{
gamma = alias_tensor(1,
sub.get_output().k(),
sub.get_output().nr(),
sub.get_output().nc());
}
else
{
gamma = alias_tensor(1, sub.get_output().k());
}
beta = gamma;
params.set_size(gamma.size()+beta.size());
gamma(params,0) = 1;
beta(params,gamma.size()) = 0;
running_means.copy_size(gamma(params,0));
running_variances.copy_size(gamma(params,0));
running_means = 0;
running_variances = 1;
num_updates = 0;
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto g = gamma(params,0);
auto b = beta(params,gamma.size());
if (sub.get_output().num_samples() > 1)
{
const double decay = 1.0 - num_updates/(num_updates+1.0);
++num_updates;
if (num_updates > running_stats_window_size)
num_updates = running_stats_window_size;
if (mode == FC_MODE)
tt::batch_normalize(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
else
tt::batch_normalize_conv(eps, output, means, invstds, decay, running_means, running_variances, sub.get_output(), g, b);
}
else // we are running in testing mode so we just linearly scale the input tensor.
{
if (mode == FC_MODE)
tt::batch_normalize_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
else
tt::batch_normalize_conv_inference(eps, output, sub.get_output(), g, b, running_means, running_variances);
}
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{
auto g = gamma(params,0);
auto g_grad = gamma(params_grad, 0);
auto b_grad = beta(params_grad, gamma.size());
if (mode == FC_MODE)
tt::batch_normalize_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
else
tt::batch_normalize_conv_gradient(eps, gradient_input, means, invstds, sub.get_output(), g, sub.get_gradient_input(), g_grad, b_grad );
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const bn_& item, std::ostream& out)
{
if (mode == CONV_MODE)
serialize("bn_con2", out);
else // if FC_MODE
serialize("bn_fc2", out);
serialize(item.params, out);
serialize(item.gamma, out);
serialize(item.beta, out);
serialize(item.means, out);
serialize(item.invstds, out);
serialize(item.running_means, out);
serialize(item.running_variances, out);
serialize(item.num_updates, out);
serialize(item.running_stats_window_size, out);
serialize(item.learning_rate_multiplier, out);
serialize(item.weight_decay_multiplier, out);
serialize(item.bias_learning_rate_multiplier, out);
serialize(item.bias_weight_decay_multiplier, out);
serialize(item.eps, out);
}
friend void deserialize(bn_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (mode == CONV_MODE)
{
if (version != "bn_con2")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
}
else // must be in FC_MODE
{
if (version != "bn_fc2")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::bn_.");
}
deserialize(item.params, in);
deserialize(item.gamma, in);
deserialize(item.beta, in);
deserialize(item.means, in);
deserialize(item.invstds, in);
deserialize(item.running_means, in);
deserialize(item.running_variances, in);
deserialize(item.num_updates, in);
deserialize(item.running_stats_window_size, in);
deserialize(item.learning_rate_multiplier, in);
deserialize(item.weight_decay_multiplier, in);
deserialize(item.bias_learning_rate_multiplier, in);
deserialize(item.bias_weight_decay_multiplier, in);
deserialize(item.eps, in);
}
friend std::ostream& operator<<(std::ostream& out, const bn_& item)
{
if (mode == CONV_MODE)
out << "bn_con ";
else
out << "bn_fc ";
out << " eps="<<item.eps;
out << " running_stats_window_size="<<item.running_stats_window_size;
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
return out;
}
friend void to_xml(const bn_& item, std::ostream& out)
{
if (mode==CONV_MODE)
out << "<bn_con";
else
out << "<bn_fc";
out << " eps='"<<item.eps<<"'";
out << " running_stats_window_size='"<<item.running_stats_window_size<<"'";
out << " learning_rate_mult='"<<item.learning_rate_multiplier<<"'";
out << " weight_decay_mult='"<<item.weight_decay_multiplier<<"'";
out << " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'";
out << " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'";
out << ">\n";
out << mat(item.params);
if (mode==CONV_MODE)
out << "</bn_con>\n";
else
out << "</bn_fc>\n";
}
private:
friend class affine_;
resizable_tensor params;
alias_tensor gamma, beta;
resizable_tensor means, running_means;
resizable_tensor invstds, running_variances;
unsigned long num_updates;
unsigned long running_stats_window_size;
double learning_rate_multiplier;
double weight_decay_multiplier;
double bias_learning_rate_multiplier;
double bias_weight_decay_multiplier;
double eps;
};
template <typename SUBNET>
using bn_con = add_layer<bn_<CONV_MODE>, SUBNET>;
template <typename SUBNET>
using bn_fc = add_layer<bn_<FC_MODE>, SUBNET>;
// ----------------------------------------------------------------------------------------
namespace impl
{
class visitor_bn_running_stats_window_size
{
public:
visitor_bn_running_stats_window_size(unsigned long new_window_size_) : new_window_size(new_window_size_) {}
template <typename T>
void set_window_size(T&) const
{
// ignore other layer detail types
}
template < layer_mode mode >
void set_window_size(bn_<mode>& l) const
{
l.set_running_stats_window_size(new_window_size);
}
template<typename input_layer_type>
void operator()(size_t , input_layer_type& ) const
{
// ignore other layers
}
template <typename T, typename U, typename E>
void operator()(size_t , add_layer<T,U,E>& l) const
{
set_window_size(l.layer_details());
}
private:
unsigned long new_window_size;
};
class visitor_disable_input_bias
{
public:
template <typename T>
void disable_input_bias(T&) const
{
// ignore other layer types
}
// handle the standard case
template <typename U, typename E>
void disable_input_bias(add_layer<layer_norm_, U, E>& l)
{
disable_bias(l.subnet().layer_details());
set_bias_learning_rate_multiplier(l.subnet().layer_details(), 0);
set_bias_weight_decay_multiplier(l.subnet().layer_details(), 0);
}
template <layer_mode mode, typename U, typename E>
void disable_input_bias(add_layer<bn_<mode>, U, E>& l)
{
disable_bias(l.subnet().layer_details());
set_bias_learning_rate_multiplier(l.subnet().layer_details(), 0);
set_bias_weight_decay_multiplier(l.subnet().layer_details(), 0);
}
// handle input repeat layer case
template <layer_mode mode, size_t N, template <typename> class R, typename U, typename E>
void disable_input_bias(add_layer<bn_<mode>, repeat<N, R, U>, E>& l)
{
disable_bias(l.subnet().get_repeated_layer(0).layer_details());
set_bias_learning_rate_multiplier(l.subnet().get_repeated_layer(0).layer_details(), 0);
set_bias_weight_decay_multiplier(l.subnet().get_repeated_layer(0).layer_details(), 0);
}
template <size_t N, template <typename> class R, typename U, typename E>
void disable_input_bias(add_layer<layer_norm_, repeat<N, R, U>, E>& l)
{
disable_bias(l.subnet().get_repeated_layer(0).layer_details());
set_bias_learning_rate_multiplier(l.subnet().get_repeated_layer(0).layer_details(), 0);
set_bias_weight_decay_multiplier(l.subnet().get_repeated_layer(0).layer_details(), 0);
}
// handle input repeat layer with tag case
template <layer_mode mode, unsigned long ID, typename E, typename F>
void disable_input_bias(add_layer<bn_<mode>, add_tag_layer<ID, impl::repeat_input_layer, E>, F>& )
{
}
template <unsigned long ID, typename E, typename F>
void disable_input_bias(add_layer<layer_norm_, add_tag_layer<ID, impl::repeat_input_layer, E>, F>& )
{
}
template<typename input_layer_type>
void operator()(size_t , input_layer_type& ) const
{
// ignore other layers
}
template <typename T, typename U, typename E>
void operator()(size_t , add_layer<T,U,E>& l)
{
disable_input_bias(l);
}
};
}
template <typename net_type>
void set_all_bn_running_stats_window_sizes (
net_type& net,
unsigned long new_window_size
)
{
visit_layers(net, impl::visitor_bn_running_stats_window_size(new_window_size));
}
template <typename net_type>
void disable_duplicative_biases (
net_type& net
)
{
visit_layers(net, impl::visitor_disable_input_bias());
}
// ----------------------------------------------------------------------------------------
enum fc_bias_mode
{
FC_HAS_BIAS = 0,
FC_NO_BIAS = 1
};
struct num_fc_outputs
{
num_fc_outputs(unsigned long n) : num_outputs(n) {}
unsigned long num_outputs;
};
template <
unsigned long num_outputs_,
fc_bias_mode bias_mode
>
class fc_
{
static_assert(num_outputs_ > 0, "The number of outputs from a fc_ layer must be > 0");
public:
fc_(num_fc_outputs o) : num_outputs(o.num_outputs), num_inputs(0),
learning_rate_multiplier(1),
weight_decay_multiplier(1),
bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(0),
use_bias(true)
{}
fc_() : fc_(num_fc_outputs(num_outputs_)) {}
double get_learning_rate_multiplier () const { return learning_rate_multiplier; }
double get_weight_decay_multiplier () const { return weight_decay_multiplier; }
void set_learning_rate_multiplier(double val) { learning_rate_multiplier = val; }
void set_weight_decay_multiplier(double val) { weight_decay_multiplier = val; }
double get_bias_learning_rate_multiplier () const { return bias_learning_rate_multiplier; }
double get_bias_weight_decay_multiplier () const { return bias_weight_decay_multiplier; }
void set_bias_learning_rate_multiplier(double val) { bias_learning_rate_multiplier = val; }
void set_bias_weight_decay_multiplier(double val) { bias_weight_decay_multiplier = val; }
void disable_bias() { use_bias = false; }
bool bias_is_disabled() const { return !use_bias; }
unsigned long get_num_outputs (
) const { return num_outputs; }
void set_num_outputs(long num)
{
DLIB_CASSERT(num > 0);
if (num != (long)num_outputs)
{
DLIB_CASSERT(get_layer_params().size() == 0,
"You can't change the number of filters in fc_ if the parameter tensor has already been allocated.");
num_outputs = num;
}
}
fc_bias_mode get_bias_mode (
) const { return bias_mode; }
template <typename SUBNET>
void setup (const SUBNET& sub)
{
num_inputs = sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k();
if (bias_mode == FC_HAS_BIAS && use_bias)
params.set_size(num_inputs+1, num_outputs);
else
params.set_size(num_inputs, num_outputs);
dlib::rand rnd(std::rand());
randomize_parameters(params, num_inputs+num_outputs, rnd);
weights = alias_tensor(num_inputs, num_outputs);
if (bias_mode == FC_HAS_BIAS && use_bias)
{
biases = alias_tensor(1,num_outputs);
// set the initial bias values to zero
biases(params,weights.size()) = 0;
}
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
DLIB_CASSERT((long)num_inputs == sub.get_output().nr()*sub.get_output().nc()*sub.get_output().k(),
"The size of the input tensor to this fc layer doesn't match the size the fc layer was trained with.");
output.set_size(sub.get_output().num_samples(), num_outputs);
auto w = weights(params, 0);
tt::gemm(0,output, 1,sub.get_output(),false, w,false);
if (bias_mode == FC_HAS_BIAS && use_bias)
{
auto b = biases(params, weights.size());
tt::add(1,output,1,b);
}
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{
// no point computing the parameter gradients if they won't be used.
if (learning_rate_multiplier != 0)
{
// compute the gradient of the weight parameters.
auto pw = weights(params_grad, 0);
tt::gemm(0,pw, 1,sub.get_output(),true, gradient_input,false);
if (bias_mode == FC_HAS_BIAS && use_bias)
{
// compute the gradient of the bias parameters.
auto pb = biases(params_grad, weights.size());
tt::assign_bias_gradient(pb, gradient_input);
}
}
// compute the gradient for the data
auto w = weights(params, 0);
tt::gemm(1,sub.get_gradient_input(), 1,gradient_input,false, w,true);
}
alias_tensor_instance get_weights()
{
return weights(params, 0);
}
alias_tensor_const_instance get_weights() const
{
return weights(params, 0);
}
alias_tensor_instance get_biases()
{
static_assert(bias_mode == FC_HAS_BIAS, "This fc_ layer doesn't have a bias vector "
"to be retrieved, as per template parameter 'bias_mode'.");
return biases(params, weights.size());
}
alias_tensor_const_instance get_biases() const
{
static_assert(bias_mode == FC_HAS_BIAS, "This fc_ layer doesn't have a bias vector "
"to be retrieved, as per template parameter 'bias_mode'.");
return biases(params, weights.size());
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const fc_& item, std::ostream& out)
{
serialize("fc_3", out);
serialize(item.num_outputs, out);
serialize(item.num_inputs, out);
serialize(item.params, out);
serialize(item.weights, out);
serialize(item.biases, out);
serialize((int)bias_mode, out);
serialize(item.learning_rate_multiplier, out);
serialize(item.weight_decay_multiplier, out);
serialize(item.bias_learning_rate_multiplier, out);
serialize(item.bias_weight_decay_multiplier, out);
serialize(item.use_bias, out);
}
friend void deserialize(fc_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version == "fc_2" || version == "fc_3")
{
deserialize(item.num_outputs, in);
deserialize(item.num_inputs, in);
deserialize(item.params, in);
deserialize(item.weights, in);
deserialize(item.biases, in);
int bmode = 0;
deserialize(bmode, in);
if (bias_mode != (fc_bias_mode)bmode) throw serialization_error("Wrong fc_bias_mode found while deserializing dlib::fc_");
deserialize(item.learning_rate_multiplier, in);
deserialize(item.weight_decay_multiplier, in);
deserialize(item.bias_learning_rate_multiplier, in);
deserialize(item.bias_weight_decay_multiplier, in);
if (version == "fc_3")
{
deserialize(item.use_bias, in);
}
}
else
{
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::fc_.");
}
}
friend std::ostream& operator<<(std::ostream& out, const fc_& item)
{
if (bias_mode == FC_HAS_BIAS)
{
out << "fc\t ("
<< "num_outputs="<<item.num_outputs
<< ")";
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
if (item.use_bias)
{
out << " bias_learning_rate_mult="<<item.bias_learning_rate_multiplier;
out << " bias_weight_decay_mult="<<item.bias_weight_decay_multiplier;
}
else
{
out << " use_bias=false";
}
}
else
{
out << "fc_no_bias ("
<< "num_outputs="<<item.num_outputs
<< ")";
out << " learning_rate_mult="<<item.learning_rate_multiplier;
out << " weight_decay_mult="<<item.weight_decay_multiplier;
}
return out;
}
friend void to_xml(const fc_& item, std::ostream& out)
{
if (bias_mode==FC_HAS_BIAS)
{
out << "<fc"
<< " num_outputs='"<<item.num_outputs<<"'"
<< " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
<< " weight_decay_mult='"<<item.weight_decay_multiplier<<"'"
<< " bias_learning_rate_mult='"<<item.bias_learning_rate_multiplier<<"'"
<< " bias_weight_decay_mult='"<<item.bias_weight_decay_multiplier<<"'"
<< " use_bias='"<<(item.use_bias?"true":"false")<<"'>\n";
out << ">\n";
out << mat(item.params);
out << "</fc>\n";
}
else
{
out << "<fc_no_bias"
<< " num_outputs='"<<item.num_outputs<<"'"
<< " learning_rate_mult='"<<item.learning_rate_multiplier<<"'"
<< " weight_decay_mult='"<<item.weight_decay_multiplier<<"'";
out << ">\n";
out << mat(item.params);
out << "</fc_no_bias>\n";
}
}
private:
unsigned long num_outputs;
unsigned long num_inputs;
resizable_tensor params;
alias_tensor weights, biases;
double learning_rate_multiplier;
double weight_decay_multiplier;
double bias_learning_rate_multiplier;
double bias_weight_decay_multiplier;
bool use_bias;
};
template <
unsigned long num_outputs,
typename SUBNET
>
using fc = add_layer<fc_<num_outputs,FC_HAS_BIAS>, SUBNET>;
template <
unsigned long num_outputs,
typename SUBNET
>
using fc_no_bias = add_layer<fc_<num_outputs,FC_NO_BIAS>, SUBNET>;
// ----------------------------------------------------------------------------------------
class dropout_
{
public:
explicit dropout_(
float drop_rate_ = 0.5
) :
drop_rate(drop_rate_),
rnd(std::rand())
{
DLIB_CASSERT(0 <= drop_rate && drop_rate <= 1);
}
// We have to add a copy constructor and assignment operator because the rnd object
// is non-copyable.
dropout_(
const dropout_& item
) : drop_rate(item.drop_rate), mask(item.mask), rnd(std::rand())
{}
dropout_& operator= (
const dropout_& item
)
{
if (this == &item)
return *this;
drop_rate = item.drop_rate;
mask = item.mask;
return *this;
}
float get_drop_rate (
) const { return drop_rate; }
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
// create a random mask and use it to filter the data
mask.copy_size(input);
rnd.fill_uniform(mask);
tt::threshold(mask, drop_rate);
tt::multiply(false, output, input, mask);
}
void backward_inplace(
const tensor& gradient_input,
tensor& data_grad,
tensor& /*params_grad*/
)
{
if (is_same_object(gradient_input, data_grad))
tt::multiply(false, data_grad, mask, gradient_input);
else
tt::multiply(true, data_grad, mask, gradient_input);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const dropout_& item, std::ostream& out)
{
serialize("dropout_", out);
serialize(item.drop_rate, out);
serialize(item.mask, out);
}
friend void deserialize(dropout_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "dropout_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::dropout_.");
deserialize(item.drop_rate, in);
deserialize(item.mask, in);
}
void clean(
)
{
mask.clear();
}
friend std::ostream& operator<<(std::ostream& out, const dropout_& item)
{
out << "dropout\t ("
<< "drop_rate="<<item.drop_rate
<< ")";
return out;
}
friend void to_xml(const dropout_& item, std::ostream& out)
{
out << "<dropout"
<< " drop_rate='"<<item.drop_rate<<"'";
out << "/>\n";
}
private:
float drop_rate;
resizable_tensor mask;
tt::tensor_rand rnd;
resizable_tensor params; // unused
};
template <typename SUBNET>
using dropout = add_layer<dropout_, SUBNET>;
// ----------------------------------------------------------------------------------------
class multiply_
{
public:
explicit multiply_(
float val_ = 0.5
) :
val(val_)
{
}
multiply_ (
const dropout_& item
) : val(1-item.get_drop_rate()) {}
float get_multiply_value (
) const { return val; }
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::affine_transform(output, input, val);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
void backward_inplace(
const tensor& gradient_input,
tensor& data_grad,
tensor& /*params_grad*/
)
{
if (is_same_object(gradient_input, data_grad))
tt::affine_transform(data_grad, gradient_input, val);
else
tt::affine_transform(data_grad, data_grad, gradient_input, 1, val);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const multiply_& item, std::ostream& out)
{
serialize("multiply_", out);
serialize(item.val, out);
}
friend void deserialize(multiply_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version == "dropout_")
{
// Since we can build a multiply_ from a dropout_ we check if that's what
// is in the stream and if so then just convert it right here.
unserialize sin(version, in);
dropout_ temp;
deserialize(temp, sin);
item = temp;
return;
}
if (version != "multiply_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::multiply_.");
deserialize(item.val, in);
}
friend std::ostream& operator<<(std::ostream& out, const multiply_& item)
{
out << "multiply ("
<< "val="<<item.val
<< ")";
return out;
}
friend void to_xml(const multiply_& item, std::ostream& out)
{
out << "<multiply"
<< " val='"<<item.val<<"'";
out << "/>\n";
}
private:
float val;
resizable_tensor params; // unused
};
template <typename SUBNET>
using multiply = add_layer<multiply_, SUBNET>;
// ----------------------------------------------------------------------------------------
class affine_
{
public:
affine_(
) : mode(FC_MODE)
{
}
affine_(
layer_mode mode_
) : mode(mode_)
{
}
template <
layer_mode bnmode
>
affine_(
const bn_<bnmode>& item
)
{
gamma = item.gamma;
beta = item.beta;
mode = bnmode;
params.copy_size(item.params);
auto g = gamma(params,0);
auto b = beta(params,gamma.size());
resizable_tensor temp(item.params);
auto sg = gamma(temp,0);
auto sb = beta(temp,gamma.size());
g = pointwise_divide(mat(sg), sqrt(mat(item.running_variances)+item.get_eps()));
b = mat(sb) - pointwise_multiply(mat(g), mat(item.running_means));
}
layer_mode get_mode() const { return mode; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
template <typename SUBNET>
void setup (const SUBNET& sub)
{
if (mode == FC_MODE)
{
gamma = alias_tensor(1,
sub.get_output().k(),
sub.get_output().nr(),
sub.get_output().nc());
}
else
{
gamma = alias_tensor(1, sub.get_output().k());
}
beta = gamma;
params.set_size(gamma.size()+beta.size());
gamma(params,0) = 1;
beta(params,gamma.size()) = 0;
}
void forward_inplace(const tensor& input, tensor& output)
{
auto g = gamma(params,0);
auto b = beta(params,gamma.size());
if (mode == FC_MODE)
tt::affine_transform(output, input, g, b);
else
tt::affine_transform_conv(output, input, g, b);
}
void backward_inplace(
const tensor& gradient_input,
tensor& data_grad,
tensor& /*params_grad*/
)
{
auto g = gamma(params,0);
auto b = beta(params,gamma.size());
// We are computing the gradient of dot(gradient_input, computed_output*g + b)
if (mode == FC_MODE)
{
if (is_same_object(gradient_input, data_grad))
tt::multiply(false, data_grad, gradient_input, g);
else
tt::multiply(true, data_grad, gradient_input, g);
}
else
{
if (is_same_object(gradient_input, data_grad))
tt::multiply_conv(false, data_grad, gradient_input, g);
else
tt::multiply_conv(true, data_grad, gradient_input, g);
}
}
const tensor& get_layer_params() const { return empty_params; }
tensor& get_layer_params() { return empty_params; }
friend void serialize(const affine_& item, std::ostream& out)
{
serialize("affine_", out);
serialize(item.params, out);
serialize(item.gamma, out);
serialize(item.beta, out);
serialize((int)item.mode, out);
}
friend void deserialize(affine_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version == "bn_con2")
{
// Since we can build an affine_ from a bn_ we check if that's what is in
// the stream and if so then just convert it right here.
unserialize sin(version, in);
bn_<CONV_MODE> temp;
deserialize(temp, sin);
item = temp;
return;
}
else if (version == "bn_fc2")
{
// Since we can build an affine_ from a bn_ we check if that's what is in
// the stream and if so then just convert it right here.
unserialize sin(version, in);
bn_<FC_MODE> temp;
deserialize(temp, sin);
item = temp;
return;
}
if (version != "affine_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::affine_.");
deserialize(item.params, in);
deserialize(item.gamma, in);
deserialize(item.beta, in);
int mode;
deserialize(mode, in);
item.mode = (layer_mode)mode;
}
friend std::ostream& operator<<(std::ostream& out, const affine_& /*item*/)
{
out << "affine";
return out;
}
friend void to_xml(const affine_& item, std::ostream& out)
{
if (item.mode==CONV_MODE)
out << "<affine_con>\n";
else
out << "<affine_fc>\n";
out << mat(item.params);
if (item.mode==CONV_MODE)
out << "</affine_con>\n";
else
out << "</affine_fc>\n";
}
private:
resizable_tensor params, empty_params;
alias_tensor gamma, beta;
layer_mode mode;
};
template <typename SUBNET>
using affine = add_layer<affine_, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class tag
>
class add_prev_
{
public:
const static unsigned long id = tag_id<tag>::id;
add_prev_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto&& t1 = sub.get_output();
auto&& t2 = layer<tag>(sub).get_output();
output.set_size(std::max(t1.num_samples(),t2.num_samples()),
std::max(t1.k(),t2.k()),
std::max(t1.nr(),t2.nr()),
std::max(t1.nc(),t2.nc()));
tt::add(output, t1, t2);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
// The gradient just flows backwards to the two layers that forward() added
// together.
tt::add(sub.get_gradient_input(), sub.get_gradient_input(), gradient_input);
tt::add(layer<tag>(sub).get_gradient_input(), layer<tag>(sub).get_gradient_input(), gradient_input);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
friend void serialize(const add_prev_& /*item*/, std::ostream& out)
{
serialize("add_prev_", out);
}
friend void deserialize(add_prev_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "add_prev_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::add_prev_.");
}
friend std::ostream& operator<<(std::ostream& out, const add_prev_& /*item*/)
{
out << "add_prev"<<id;
return out;
}
friend void to_xml(const add_prev_& /*item*/, std::ostream& out)
{
out << "<add_prev tag='"<<id<<"'/>\n";
}
private:
resizable_tensor params;
};
template <
template<typename> class tag,
typename SUBNET
>
using add_prev = add_layer<add_prev_<tag>, SUBNET>;
template <typename SUBNET> using add_prev1 = add_prev<tag1, SUBNET>;
template <typename SUBNET> using add_prev2 = add_prev<tag2, SUBNET>;
template <typename SUBNET> using add_prev3 = add_prev<tag3, SUBNET>;
template <typename SUBNET> using add_prev4 = add_prev<tag4, SUBNET>;
template <typename SUBNET> using add_prev5 = add_prev<tag5, SUBNET>;
template <typename SUBNET> using add_prev6 = add_prev<tag6, SUBNET>;
template <typename SUBNET> using add_prev7 = add_prev<tag7, SUBNET>;
template <typename SUBNET> using add_prev8 = add_prev<tag8, SUBNET>;
template <typename SUBNET> using add_prev9 = add_prev<tag9, SUBNET>;
template <typename SUBNET> using add_prev10 = add_prev<tag10, SUBNET>;
using add_prev1_ = add_prev_<tag1>;
using add_prev2_ = add_prev_<tag2>;
using add_prev3_ = add_prev_<tag3>;
using add_prev4_ = add_prev_<tag4>;
using add_prev5_ = add_prev_<tag5>;
using add_prev6_ = add_prev_<tag6>;
using add_prev7_ = add_prev_<tag7>;
using add_prev8_ = add_prev_<tag8>;
using add_prev9_ = add_prev_<tag9>;
using add_prev10_ = add_prev_<tag10>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class tag
>
class mult_prev_
{
public:
const static unsigned long id = tag_id<tag>::id;
mult_prev_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto&& t1 = sub.get_output();
auto&& t2 = layer<tag>(sub).get_output();
output.set_size(std::max(t1.num_samples(),t2.num_samples()),
std::max(t1.k(),t2.k()),
std::max(t1.nr(),t2.nr()),
std::max(t1.nc(),t2.nc()));
tt::multiply_zero_padded(false, output, t1, t2);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
auto&& t1 = sub.get_output();
auto&& t2 = layer<tag>(sub).get_output();
// The gradient just flows backwards to the two layers that forward()
// multiplied together.
tt::multiply_zero_padded(true, sub.get_gradient_input(), t2, gradient_input);
tt::multiply_zero_padded(true, layer<tag>(sub).get_gradient_input(), t1, gradient_input);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
friend void serialize(const mult_prev_& /*item*/, std::ostream& out)
{
serialize("mult_prev_", out);
}
friend void deserialize(mult_prev_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "mult_prev_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::mult_prev_.");
}
friend std::ostream& operator<<(std::ostream& out, const mult_prev_& /*item*/)
{
out << "mult_prev"<<id;
return out;
}
friend void to_xml(const mult_prev_& /*item*/, std::ostream& out)
{
out << "<mult_prev tag='"<<id<<"'/>\n";
}
private:
resizable_tensor params;
};
template <
template<typename> class tag,
typename SUBNET
>
using mult_prev = add_layer<mult_prev_<tag>, SUBNET>;
template <typename SUBNET> using mult_prev1 = mult_prev<tag1, SUBNET>;
template <typename SUBNET> using mult_prev2 = mult_prev<tag2, SUBNET>;
template <typename SUBNET> using mult_prev3 = mult_prev<tag3, SUBNET>;
template <typename SUBNET> using mult_prev4 = mult_prev<tag4, SUBNET>;
template <typename SUBNET> using mult_prev5 = mult_prev<tag5, SUBNET>;
template <typename SUBNET> using mult_prev6 = mult_prev<tag6, SUBNET>;
template <typename SUBNET> using mult_prev7 = mult_prev<tag7, SUBNET>;
template <typename SUBNET> using mult_prev8 = mult_prev<tag8, SUBNET>;
template <typename SUBNET> using mult_prev9 = mult_prev<tag9, SUBNET>;
template <typename SUBNET> using mult_prev10 = mult_prev<tag10, SUBNET>;
using mult_prev1_ = mult_prev_<tag1>;
using mult_prev2_ = mult_prev_<tag2>;
using mult_prev3_ = mult_prev_<tag3>;
using mult_prev4_ = mult_prev_<tag4>;
using mult_prev5_ = mult_prev_<tag5>;
using mult_prev6_ = mult_prev_<tag6>;
using mult_prev7_ = mult_prev_<tag7>;
using mult_prev8_ = mult_prev_<tag8>;
using mult_prev9_ = mult_prev_<tag9>;
using mult_prev10_ = mult_prev_<tag10>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class tag
>
class resize_prev_to_tagged_
{
public:
const static unsigned long id = tag_id<tag>::id;
resize_prev_to_tagged_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto& prev = sub.get_output();
auto& tagged = layer<tag>(sub).get_output();
DLIB_CASSERT(prev.num_samples() == tagged.num_samples());
output.set_size(prev.num_samples(),
prev.k(),
tagged.nr(),
tagged.nc());
if (prev.nr() == tagged.nr() && prev.nc() == tagged.nc())
{
tt::copy_tensor(false, output, 0, prev, 0, prev.k());
}
else
{
tt::resize_bilinear(output, prev);
}
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
auto& prev = sub.get_gradient_input();
DLIB_CASSERT(prev.k() == gradient_input.k());
DLIB_CASSERT(prev.num_samples() == gradient_input.num_samples());
if (prev.nr() == gradient_input.nr() && prev.nc() == gradient_input.nc())
{
tt::copy_tensor(true, prev, 0, gradient_input, 0, prev.k());
}
else
{
tt::resize_bilinear_gradient(prev, gradient_input);
}
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
friend void serialize(const resize_prev_to_tagged_& /*item*/, std::ostream& out)
{
serialize("resize_prev_to_tagged_", out);
}
friend void deserialize(resize_prev_to_tagged_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "resize_prev_to_tagged_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::resize_prev_to_tagged_.");
}
friend std::ostream& operator<<(std::ostream& out, const resize_prev_to_tagged_& /*item*/)
{
out << "resize_prev_to_tagged"<<id;
return out;
}
friend void to_xml(const resize_prev_to_tagged_& /*item*/, std::ostream& out)
{
out << "<resize_prev_to_tagged tag='"<<id<<"'/>\n";
}
private:
resizable_tensor params;
};
template <
template<typename> class tag,
typename SUBNET
>
using resize_prev_to_tagged = add_layer<resize_prev_to_tagged_<tag>, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class tag
>
class scale_
{
public:
const static unsigned long id = tag_id<tag>::id;
scale_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto&& scales = sub.get_output();
auto&& src = layer<tag>(sub).get_output();
DLIB_CASSERT(scales.num_samples() == src.num_samples() &&
scales.k() == src.k() &&
scales.nr() == 1 &&
scales.nc() == 1,
"scales.k(): " << scales.k() <<
"\nsrc.k(): " << src.k()
);
output.copy_size(src);
tt::scale_channels(false, output, src, scales);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
auto&& scales = sub.get_output();
auto&& src = layer<tag>(sub).get_output();
// The gradient just flows backwards to the two layers that forward()
// read from.
tt::scale_channels(true, layer<tag>(sub).get_gradient_input(), gradient_input, scales);
if (reshape_src.num_samples() != src.num_samples())
{
reshape_scales = alias_tensor(src.num_samples()*src.k());
reshape_src = alias_tensor(src.num_samples()*src.k(),src.nr()*src.nc());
}
auto&& scales_grad = sub.get_gradient_input();
auto sgrad = reshape_scales(scales_grad);
tt::dot_prods(true, sgrad, reshape_src(src), reshape_src(gradient_input));
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const scale_& item, std::ostream& out)
{
serialize("scale_", out);
serialize(item.reshape_scales, out);
serialize(item.reshape_src, out);
}
friend void deserialize(scale_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "scale_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::scale_.");
deserialize(item.reshape_scales, in);
deserialize(item.reshape_src, in);
}
friend std::ostream& operator<<(std::ostream& out, const scale_& /*item*/)
{
out << "scale"<<id;
return out;
}
friend void to_xml(const scale_& /*item*/, std::ostream& out)
{
out << "<scale tag='"<<id<<"'/>\n";
}
private:
alias_tensor reshape_scales;
alias_tensor reshape_src;
resizable_tensor params;
};
template <
template<typename> class tag,
typename SUBNET
>
using scale = add_layer<scale_<tag>, SUBNET>;
template <typename SUBNET> using scale1 = scale<tag1, SUBNET>;
template <typename SUBNET> using scale2 = scale<tag2, SUBNET>;
template <typename SUBNET> using scale3 = scale<tag3, SUBNET>;
template <typename SUBNET> using scale4 = scale<tag4, SUBNET>;
template <typename SUBNET> using scale5 = scale<tag5, SUBNET>;
template <typename SUBNET> using scale6 = scale<tag6, SUBNET>;
template <typename SUBNET> using scale7 = scale<tag7, SUBNET>;
template <typename SUBNET> using scale8 = scale<tag8, SUBNET>;
template <typename SUBNET> using scale9 = scale<tag9, SUBNET>;
template <typename SUBNET> using scale10 = scale<tag10, SUBNET>;
using scale1_ = scale_<tag1>;
using scale2_ = scale_<tag2>;
using scale3_ = scale_<tag3>;
using scale4_ = scale_<tag4>;
using scale5_ = scale_<tag5>;
using scale6_ = scale_<tag6>;
using scale7_ = scale_<tag7>;
using scale8_ = scale_<tag8>;
using scale9_ = scale_<tag9>;
using scale10_ = scale_<tag10>;
// ----------------------------------------------------------------------------------------
template <
template<typename> class tag
>
class scale_prev_
{
public:
const static unsigned long id = tag_id<tag>::id;
scale_prev_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
auto&& src = sub.get_output();
auto&& scales = layer<tag>(sub).get_output();
DLIB_CASSERT(scales.num_samples() == src.num_samples() &&
scales.k() == src.k() &&
scales.nr() == 1 &&
scales.nc() == 1,
"scales.k(): " << scales.k() <<
"\nsrc.k(): " << src.k()
);
output.copy_size(src);
tt::scale_channels(false, output, src, scales);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
auto&& src = sub.get_output();
auto&& scales = layer<tag>(sub).get_output();
tt::scale_channels(true, sub.get_gradient_input(), gradient_input, scales);
if (reshape_src.num_samples() != src.num_samples())
{
reshape_scales = alias_tensor(src.num_samples()*src.k());
reshape_src = alias_tensor(src.num_samples()*src.k(),src.nr()*src.nc());
}
auto&& scales_grad = layer<tag>(sub).get_gradient_input();
auto sgrad = reshape_scales(scales_grad);
tt::dot_prods(true, sgrad, reshape_src(src), reshape_src(gradient_input));
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
friend void serialize(const scale_prev_& item, std::ostream& out)
{
serialize("scale_prev_", out);
serialize(item.reshape_scales, out);
serialize(item.reshape_src, out);
}
friend void deserialize(scale_prev_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "scale_prev_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::scale_prev_.");
deserialize(item.reshape_scales, in);
deserialize(item.reshape_src, in);
}
friend std::ostream& operator<<(std::ostream& out, const scale_prev_& /*item*/)
{
out << "scale_prev"<<id;
return out;
}
friend void to_xml(const scale_prev_& /*item*/, std::ostream& out)
{
out << "<scale_prev tag='"<<id<<"'/>\n";
}
private:
alias_tensor reshape_scales;
alias_tensor reshape_src;
resizable_tensor params;
};
template <
template<typename> class tag,
typename SUBNET
>
using scale_prev = add_layer<scale_prev_<tag>, SUBNET>;
template <typename SUBNET> using scale_prev1 = scale_prev<tag1, SUBNET>;
template <typename SUBNET> using scale_prev2 = scale_prev<tag2, SUBNET>;
template <typename SUBNET> using scale_prev3 = scale_prev<tag3, SUBNET>;
template <typename SUBNET> using scale_prev4 = scale_prev<tag4, SUBNET>;
template <typename SUBNET> using scale_prev5 = scale_prev<tag5, SUBNET>;
template <typename SUBNET> using scale_prev6 = scale_prev<tag6, SUBNET>;
template <typename SUBNET> using scale_prev7 = scale_prev<tag7, SUBNET>;
template <typename SUBNET> using scale_prev8 = scale_prev<tag8, SUBNET>;
template <typename SUBNET> using scale_prev9 = scale_prev<tag9, SUBNET>;
template <typename SUBNET> using scale_prev10 = scale_prev<tag10, SUBNET>;
using scale_prev1_ = scale_prev_<tag1>;
using scale_prev2_ = scale_prev_<tag2>;
using scale_prev3_ = scale_prev_<tag3>;
using scale_prev4_ = scale_prev_<tag4>;
using scale_prev5_ = scale_prev_<tag5>;
using scale_prev6_ = scale_prev_<tag6>;
using scale_prev7_ = scale_prev_<tag7>;
using scale_prev8_ = scale_prev_<tag8>;
using scale_prev9_ = scale_prev_<tag9>;
using scale_prev10_ = scale_prev_<tag10>;
// ----------------------------------------------------------------------------------------
class relu_
{
public:
relu_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::relu(output, input);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::relu_gradient(data_grad, computed_output, gradient_input);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const relu_& /*item*/, std::ostream& out)
{
serialize("relu_", out);
}
friend void deserialize(relu_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "relu_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::relu_.");
}
friend std::ostream& operator<<(std::ostream& out, const relu_& /*item*/)
{
out << "relu";
return out;
}
friend void to_xml(const relu_& /*item*/, std::ostream& out)
{
out << "<relu/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using relu = add_layer<relu_, SUBNET>;
// ----------------------------------------------------------------------------------------
class prelu_
{
public:
explicit prelu_(
float initial_param_value_ = 0.25
) : initial_param_value(initial_param_value_)
{
}
float get_initial_param_value (
) const { return initial_param_value; }
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
params.set_size(1);
params = initial_param_value;
}
template <typename SUBNET>
void forward(
const SUBNET& sub,
resizable_tensor& data_output
)
{
data_output.copy_size(sub.get_output());
tt::prelu(data_output, sub.get_output(), params);
}
template <typename SUBNET>
void backward(
const tensor& gradient_input,
SUBNET& sub,
tensor& params_grad
)
{
tt::prelu_gradient(sub.get_gradient_input(), sub.get_output(),
gradient_input, params, params_grad);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const prelu_& item, std::ostream& out)
{
serialize("prelu_", out);
serialize(item.params, out);
serialize(item.initial_param_value, out);
}
friend void deserialize(prelu_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "prelu_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::prelu_.");
deserialize(item.params, in);
deserialize(item.initial_param_value, in);
}
friend std::ostream& operator<<(std::ostream& out, const prelu_& item)
{
out << "prelu\t ("
<< "initial_param_value="<<item.initial_param_value
<< ")";
return out;
}
friend void to_xml(const prelu_& item, std::ostream& out)
{
out << "<prelu initial_param_value='"<<item.initial_param_value<<"'>\n";
out << mat(item.params);
out << "</prelu>\n";
}
private:
resizable_tensor params;
float initial_param_value;
};
template <typename SUBNET>
using prelu = add_layer<prelu_, SUBNET>;
// ----------------------------------------------------------------------------------------
class leaky_relu_
{
public:
explicit leaky_relu_(
float alpha_ = 0.01f
) : alpha(alpha_)
{
}
float get_alpha(
) const {
return alpha;
}
template <typename SUBNET>
void setup(const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::leaky_relu(output, input, alpha);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::leaky_relu_gradient(data_grad, computed_output, gradient_input, alpha);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const leaky_relu_& item, std::ostream& out)
{
serialize("leaky_relu_", out);
serialize(item.alpha, out);
}
friend void deserialize(leaky_relu_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "leaky_relu_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::leaky_relu_.");
deserialize(item.alpha, in);
}
friend std::ostream& operator<<(std::ostream& out, const leaky_relu_& item)
{
out << "leaky_relu\t("
<< "alpha=" << item.alpha
<< ")";
return out;
}
friend void to_xml(const leaky_relu_& item, std::ostream& out)
{
out << "<leaky_relu alpha='"<< item.alpha << "'>\n";
out << "<leaky_relu/>\n";
}
private:
resizable_tensor params;
float alpha;
};
template <typename SUBNET>
using leaky_relu = add_layer<leaky_relu_, SUBNET>;
// ----------------------------------------------------------------------------------------
class sig_
{
public:
sig_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::sigmoid(output, input);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::sigmoid_gradient(data_grad, computed_output, gradient_input);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const sig_& /*item*/, std::ostream& out)
{
serialize("sig_", out);
}
friend void deserialize(sig_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "sig_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::sig_.");
}
friend std::ostream& operator<<(std::ostream& out, const sig_& /*item*/)
{
out << "sig";
return out;
}
friend void to_xml(const sig_& /*item*/, std::ostream& out)
{
out << "<sig/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using sig = add_layer<sig_, SUBNET>;
// ----------------------------------------------------------------------------------------
class mish_
{
public:
mish_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(
const SUBNET& sub,
resizable_tensor& data_output
)
{
data_output.copy_size(sub.get_output());
tt::mish(data_output, sub.get_output());
}
template <typename SUBNET>
void backward(
const tensor& gradient_input,
SUBNET& sub,
tensor&
)
{
tt::mish_gradient(sub.get_gradient_input(), sub.get_output(), gradient_input);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const mish_& /*item*/, std::ostream& out)
{
serialize("mish_", out);
}
friend void deserialize(mish_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "mish_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::mish_.");
}
friend std::ostream& operator<<(std::ostream& out, const mish_& /*item*/)
{
out << "mish";
return out;
}
friend void to_xml(const mish_& /*item*/, std::ostream& out)
{
out << "<mish/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using mish = add_layer<mish_, SUBNET>;
// ----------------------------------------------------------------------------------------
class htan_
{
public:
htan_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
void forward_inplace(const tensor& input, tensor& output)
{
tt::tanh(output, input);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::tanh_gradient(data_grad, computed_output, gradient_input);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const htan_& /*item*/, std::ostream& out)
{
serialize("htan_", out);
}
friend void deserialize(htan_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "htan_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::htan_.");
}
friend std::ostream& operator<<(std::ostream& out, const htan_& /*item*/)
{
out << "htan";
return out;
}
friend void to_xml(const htan_& /*item*/, std::ostream& out)
{
out << "<htan/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using htan = add_layer<htan_, SUBNET>;
// ----------------------------------------------------------------------------------------
class gelu_
{
public:
gelu_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
template <typename SUBNET>
void forward(
const SUBNET& sub,
resizable_tensor& data_output
)
{
data_output.copy_size(sub.get_output());
tt::gelu(data_output, sub.get_output());
}
template <typename SUBNET>
void backward(
const tensor& gradient_input,
SUBNET& sub,
tensor&
)
{
tt::gelu_gradient(sub.get_gradient_input(), sub.get_output(), gradient_input);
}
inline dpoint map_input_to_output (const dpoint& p) const { return p; }
inline dpoint map_output_to_input (const dpoint& p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const gelu_& /*item*/, std::ostream& out)
{
serialize("gelu_", out);
}
friend void deserialize(gelu_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "gelu_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::gelu_.");
}
friend std::ostream& operator<<(std::ostream& out, const gelu_& /*item*/)
{
out << "gelu";
return out;
}
friend void to_xml(const gelu_& /*item*/, std::ostream& out)
{
out << "<gelu/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using gelu = add_layer<gelu_, SUBNET>;
// ----------------------------------------------------------------------------------------
class softmax_
{
public:
softmax_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::softmax(output, input);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::softmax_gradient(data_grad, computed_output, gradient_input);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const softmax_& /*item*/, std::ostream& out)
{
serialize("softmax_", out);
}
friend void deserialize(softmax_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "softmax_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::softmax_.");
}
friend std::ostream& operator<<(std::ostream& out, const softmax_& /*item*/)
{
out << "softmax";
return out;
}
friend void to_xml(const softmax_& /*item*/, std::ostream& out)
{
out << "<softmax/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using softmax = add_layer<softmax_, SUBNET>;
// ----------------------------------------------------------------------------------------
class softmax_all_
{
public:
softmax_all_()
{
}
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::softmax_all(output, input);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor&
)
{
tt::softmax_all_gradient(data_grad, computed_output, gradient_input);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const softmax_all_& /*item*/, std::ostream& out)
{
serialize("softmax_all_", out);
}
friend void deserialize(softmax_all_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "softmax_all_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::softmax_all_.");
}
friend std::ostream& operator<<(std::ostream& out, const softmax_all_& /*item*/)
{
out << "softmax_all";
return out;
}
friend void to_xml(const softmax_all_& /*item*/, std::ostream& out)
{
out << "<softmax_all/>\n";
}
private:
resizable_tensor params;
};
template <typename SUBNET>
using softmax_all = add_layer<softmax_all_, SUBNET>;
// ----------------------------------------------------------------------------------------
namespace impl
{
template <template<typename> class TAG_TYPE, template<typename> class... TAG_TYPES>
struct concat_helper_impl{
constexpr static size_t tag_count() {return 1 + concat_helper_impl<TAG_TYPES...>::tag_count();}
static void list_tags(std::ostream& out)
{
out << tag_id<TAG_TYPE>::id << (tag_count() > 1 ? "," : "");
concat_helper_impl<TAG_TYPES...>::list_tags(out);
}
template<typename SUBNET>
static void resize_out(resizable_tensor& out, const SUBNET& sub, long sum_k)
{
auto& t = layer<TAG_TYPE>(sub).get_output();
concat_helper_impl<TAG_TYPES...>::resize_out(out, sub, sum_k + t.k());
}
template<typename SUBNET>
static void concat(tensor& out, const SUBNET& sub, size_t k_offset)
{
auto& t = layer<TAG_TYPE>(sub).get_output();
tt::copy_tensor(false, out, k_offset, t, 0, t.k());
k_offset += t.k();
concat_helper_impl<TAG_TYPES...>::concat(out, sub, k_offset);
}
template<typename SUBNET>
static void split(const tensor& input, SUBNET& sub, size_t k_offset)
{
auto& t = layer<TAG_TYPE>(sub).get_gradient_input();
tt::copy_tensor(true, t, 0, input, k_offset, t.k());
k_offset += t.k();
concat_helper_impl<TAG_TYPES...>::split(input, sub, k_offset);
}
};
template <template<typename> class TAG_TYPE>
struct concat_helper_impl<TAG_TYPE>{
constexpr static size_t tag_count() {return 1;}
static void list_tags(std::ostream& out)
{
out << tag_id<TAG_TYPE>::id;
}
template<typename SUBNET>
static void resize_out(resizable_tensor& out, const SUBNET& sub, long sum_k)
{
auto& t = layer<TAG_TYPE>(sub).get_output();
out.set_size(t.num_samples(), t.k() + sum_k, t.nr(), t.nc());
}
template<typename SUBNET>
static void concat(tensor& out, const SUBNET& sub, size_t k_offset)
{
auto& t = layer<TAG_TYPE>(sub).get_output();
tt::copy_tensor(false, out, k_offset, t, 0, t.k());
}
template<typename SUBNET>
static void split(const tensor& input, SUBNET& sub, size_t k_offset)
{
auto& t = layer<TAG_TYPE>(sub).get_gradient_input();
tt::copy_tensor(true, t, 0, input, k_offset, t.k());
}
};
}
// concat layer
template<
template<typename> class... TAG_TYPES
>
class concat_
{
static void list_tags(std::ostream& out) { impl::concat_helper_impl<TAG_TYPES...>::list_tags(out);};
public:
constexpr static size_t tag_count() {return impl::concat_helper_impl<TAG_TYPES...>::tag_count();};
template <typename SUBNET>
void setup (const SUBNET&)
{
// do nothing
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
// the total depth of result is the sum of depths from all tags
impl::concat_helper_impl<TAG_TYPES...>::resize_out(output, sub, 0);
// copy output from each tag into different part result
impl::concat_helper_impl<TAG_TYPES...>::concat(output, sub, 0);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor&)
{
// Gradient is split into parts for each tag layer
impl::concat_helper_impl<TAG_TYPES...>::split(gradient_input, sub, 0);
}
dpoint map_input_to_output(dpoint p) const { return p; }
dpoint map_output_to_input(dpoint p) const { return p; }
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const concat_& /*item*/, std::ostream& out)
{
serialize("concat_", out);
size_t count = tag_count();
serialize(count, out);
}
friend void deserialize(concat_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "concat_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::concat_.");
size_t count_tags;
deserialize(count_tags, in);
if (count_tags != tag_count())
throw serialization_error("Invalid count of tags "+ std::to_string(count_tags) +", expecting " +
std::to_string(tag_count()) +
" found while deserializing dlib::concat_.");
}
friend std::ostream& operator<<(std::ostream& out, const concat_& /*item*/)
{
out << "concat\t (";
list_tags(out);
out << ")";
return out;
}
friend void to_xml(const concat_& /*item*/, std::ostream& out)
{
out << "<concat tags='";
list_tags(out);
out << "'/>\n";
}
private:
resizable_tensor params; // unused
};
// concat layer definitions
template <template<typename> class TAG1,
template<typename> class TAG2,
typename SUBNET>
using concat2 = add_layer<concat_<TAG1, TAG2>, SUBNET>;
template <template<typename> class TAG1,
template<typename> class TAG2,
template<typename> class TAG3,
typename SUBNET>
using concat3 = add_layer<concat_<TAG1, TAG2, TAG3>, SUBNET>;
template <template<typename> class TAG1,
template<typename> class TAG2,
template<typename> class TAG3,
template<typename> class TAG4,
typename SUBNET>
using concat4 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4>, SUBNET>;
template <template<typename> class TAG1,
template<typename> class TAG2,
template<typename> class TAG3,
template<typename> class TAG4,
template<typename> class TAG5,
typename SUBNET>
using concat5 = add_layer<concat_<TAG1, TAG2, TAG3, TAG4, TAG5>, SUBNET>;
// inception layer will use tags internally. If user will use tags too, some conflicts
// possible to exclude them, here are new tags specially for inceptions
template <typename SUBNET> using itag0 = add_tag_layer< 1000 + 0, SUBNET>;
template <typename SUBNET> using itag1 = add_tag_layer< 1000 + 1, SUBNET>;
template <typename SUBNET> using itag2 = add_tag_layer< 1000 + 2, SUBNET>;
template <typename SUBNET> using itag3 = add_tag_layer< 1000 + 3, SUBNET>;
template <typename SUBNET> using itag4 = add_tag_layer< 1000 + 4, SUBNET>;
template <typename SUBNET> using itag5 = add_tag_layer< 1000 + 5, SUBNET>;
// skip to inception input
template <typename SUBNET> using iskip = add_skip_layer< itag0, SUBNET>;
// here are some templates to be used for creating inception layer groups
template <template<typename>class B1,
template<typename>class B2,
typename SUBNET>
using inception2 = concat2<itag1, itag2, itag1<B1<iskip< itag2<B2< itag0<SUBNET>>>>>>>;
template <template<typename>class B1,
template<typename>class B2,
template<typename>class B3,
typename SUBNET>
using inception3 = concat3<itag1, itag2, itag3, itag1<B1<iskip< itag2<B2<iskip< itag3<B3< itag0<SUBNET>>>>>>>>>>;
template <template<typename>class B1,
template<typename>class B2,
template<typename>class B3,
template<typename>class B4,
typename SUBNET>
using inception4 = concat4<itag1, itag2, itag3, itag4,
itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip< itag4<B4< itag0<SUBNET>>>>>>>>>>>>>;
template <template<typename>class B1,
template<typename>class B2,
template<typename>class B3,
template<typename>class B4,
template<typename>class B5,
typename SUBNET>
using inception5 = concat5<itag1, itag2, itag3, itag4, itag5,
itag1<B1<iskip< itag2<B2<iskip< itag3<B3<iskip< itag4<B4<iskip< itag5<B5< itag0<SUBNET>>>>>>>>>>>>>>>>;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
const double DEFAULT_L2_NORM_EPS = 1e-5;
class l2normalize_
{
public:
explicit l2normalize_(
double eps_ = DEFAULT_L2_NORM_EPS
) :
eps(eps_)
{
}
double get_eps() const { return eps; }
template <typename SUBNET>
void setup (const SUBNET& /*sub*/)
{
}
void forward_inplace(const tensor& input, tensor& output)
{
tt::inverse_norms(norm, input, eps);
tt::scale_rows(output, input, norm);
}
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor& /*params_grad*/
)
{
if (is_same_object(gradient_input, data_grad))
{
tt::dot_prods(temp, gradient_input, computed_output);
tt::scale_rows2(0, data_grad, gradient_input, computed_output, temp, norm);
}
else
{
tt::dot_prods(temp, gradient_input, computed_output);
tt::scale_rows2(1, data_grad, gradient_input, computed_output, temp, norm);
}
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const l2normalize_& item, std::ostream& out)
{
serialize("l2normalize_", out);
serialize(item.eps, out);
}
friend void deserialize(l2normalize_& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "l2normalize_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::l2normalize_.");
deserialize(item.eps, in);
}
friend std::ostream& operator<<(std::ostream& out, const l2normalize_& item)
{
out << "l2normalize";
out << " eps="<<item.eps;
return out;
}
friend void to_xml(const l2normalize_& item, std::ostream& out)
{
out << "<l2normalize";
out << " eps='"<<item.eps<<"'";
out << "/>\n";
}
private:
double eps;
resizable_tensor params; // unused
// Here only to avoid reallocation and as a cache between forward/backward
// functions.
resizable_tensor norm;
resizable_tensor temp;
};
template <typename SUBNET>
using l2normalize = add_layer<l2normalize_, SUBNET>;
// ----------------------------------------------------------------------------------------
template <
long _offset,
long _k,
long _nr,
long _nc
>
class extract_
{
static_assert(_offset >= 0, "The offset must be >= 0.");
static_assert(_k > 0, "The number of channels must be > 0.");
static_assert(_nr > 0, "The number of rows must be > 0.");
static_assert(_nc > 0, "The number of columns must be > 0.");
public:
extract_(
)
{
}
template <typename SUBNET>
void setup (const SUBNET& sub)
{
DLIB_CASSERT((long)sub.get_output().size() >= sub.get_output().num_samples()*(_offset+_k*_nr*_nc),
"The tensor we are trying to extract from the input tensor is too big to fit into the input tensor.");
aout = alias_tensor(sub.get_output().num_samples(), _k*_nr*_nc);
ain = alias_tensor(sub.get_output().num_samples(), sub.get_output().size()/sub.get_output().num_samples());
}
template <typename SUBNET>
void forward(const SUBNET& sub, resizable_tensor& output)
{
if (aout.num_samples() != sub.get_output().num_samples())
{
aout = alias_tensor(sub.get_output().num_samples(), _k*_nr*_nc);
ain = alias_tensor(sub.get_output().num_samples(), sub.get_output().size()/sub.get_output().num_samples());
}
output.set_size(sub.get_output().num_samples(), _k, _nr, _nc);
auto out = aout(output,0);
auto in = ain(sub.get_output(),0);
tt::copy_tensor(false, out, 0, in, _offset, _k*_nr*_nc);
}
template <typename SUBNET>
void backward(const tensor& gradient_input, SUBNET& sub, tensor& /*params_grad*/)
{
auto out = ain(sub.get_gradient_input(),0);
auto in = aout(gradient_input,0);
tt::copy_tensor(true, out, _offset, in, 0, _k*_nr*_nc);
}
const tensor& get_layer_params() const { return params; }
tensor& get_layer_params() { return params; }
friend void serialize(const extract_& /*item*/, std::ostream& out)
{
serialize("extract_", out);
serialize(_offset, out);
serialize(_k, out);
serialize(_nr, out);
serialize(_nc, out);
}
friend void deserialize(extract_& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "extract_")
throw serialization_error("Unexpected version '"+version+"' found while deserializing dlib::extract_.");
long offset;
long k;
long nr;
long nc;
deserialize(offset, in);
deserialize(k, in);
deserialize(nr, in);
deserialize(nc, in);
if (offset != _offset) throw serialization_error("Wrong offset found while deserializing dlib::extract_");
if (k != _k) throw serialization_error("Wrong k found while deserializing dlib::extract_");
if (nr != _nr) throw serialization_error("Wrong nr found while deserializing dlib::extract_");
if (nc != _nc) throw serialization_error("Wrong nc found while deserializing dlib::extract_");
}
friend std::ostream& operator<<(std::ostream& out, const extract_& /*item*/)
{
out << "extract\t ("
<< "offset="<<_offset
<< ", k="<<_k
<< ", nr="<<_nr
<< ", nc="<<_nc
<< ")";
return out;
}
friend void to_xml(const extract_& /*item*/, std::ostream& out)
{
out << "<extract";
out << " offset='"<<_offset<<"'";
out << " k='"<<_k<<"'";
out << " nr='"<<_nr<<"'";
out << " nc='"<<_nc<<"'";
out << "/>\n";
}
private:
alias_tensor aout, ain;
resizable_tensor params; // unused
};
template <
long offset,
long k,
long nr,
long nc,
typename SUBNET
>
using extract = add_layer<extract_<offset,k,nr,nc>, SUBNET>;
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DNn_LAYERS_H_