Aging_MouthReplace / dlibs /tools /python /src /sequence_segmenter.cpp
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
32.3 kB
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/svm_threaded.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
typedef matrix<double,0,1> dense_vect;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;
// ----------------------------------------------------------------------------------------
template <typename samp_type, bool BIO, bool high_order, bool nonnegative>
class segmenter_feature_extractor
{
public:
typedef std::vector<samp_type> sequence_type;
const static bool use_BIO_model = BIO;
const static bool use_high_order_features = high_order;
const static bool allow_negative_weights = nonnegative;
unsigned long _num_features;
unsigned long _window_size;
segmenter_feature_extractor(
) : _num_features(1), _window_size(1) {}
segmenter_feature_extractor(
unsigned long _num_features_,
unsigned long _window_size_
) : _num_features(_num_features_), _window_size(_window_size_) {}
unsigned long num_features(
) const { return _num_features; }
unsigned long window_size(
) const {return _window_size; }
template <typename feature_setter>
void get_features (
feature_setter& set_feature,
const std::vector<dense_vect>& x,
unsigned long position
) const
{
for (long i = 0; i < x[position].size(); ++i)
{
set_feature(i, x[position](i));
}
}
template <typename feature_setter>
void get_features (
feature_setter& set_feature,
const std::vector<sparse_vect>& x,
unsigned long position
) const
{
for (unsigned long i = 0; i < x[position].size(); ++i)
{
set_feature(x[position][i].first, x[position][i].second);
}
}
friend void serialize(const segmenter_feature_extractor& item, std::ostream& out)
{
dlib::serialize(item._num_features, out);
dlib::serialize(item._window_size, out);
}
friend void deserialize(segmenter_feature_extractor& item, std::istream& in)
{
dlib::deserialize(item._num_features, in);
dlib::deserialize(item._window_size, in);
}
};
// ----------------------------------------------------------------------------------------
struct segmenter_type
{
/*!
WHAT THIS OBJECT REPRESENTS
This the object that python will use directly to represent a
sequence_segmenter. All it does is contain all the possible template
instantiations of a sequence_segmenter and invoke the right one depending on
the mode variable.
!*/
segmenter_type() : mode(-1)
{ }
ranges segment_sequence_dense (
const std::vector<dense_vect>& x
) const
{
switch (mode)
{
case 0: return segmenter0(x);
case 1: return segmenter1(x);
case 2: return segmenter2(x);
case 3: return segmenter3(x);
case 4: return segmenter4(x);
case 5: return segmenter5(x);
case 6: return segmenter6(x);
case 7: return segmenter7(x);
default: throw dlib::error("Invalid mode");
}
}
ranges segment_sequence_sparse (
const std::vector<sparse_vect>& x
) const
{
switch (mode)
{
case 8: return segmenter8(x);
case 9: return segmenter9(x);
case 10: return segmenter10(x);
case 11: return segmenter11(x);
case 12: return segmenter12(x);
case 13: return segmenter13(x);
case 14: return segmenter14(x);
case 15: return segmenter15(x);
default: throw dlib::error("Invalid mode");
}
}
const matrix<double,0,1> get_weights()
{
switch(mode)
{
case 0: return segmenter0.get_weights();
case 1: return segmenter1.get_weights();
case 2: return segmenter2.get_weights();
case 3: return segmenter3.get_weights();
case 4: return segmenter4.get_weights();
case 5: return segmenter5.get_weights();
case 6: return segmenter6.get_weights();
case 7: return segmenter7.get_weights();
case 8: return segmenter8.get_weights();
case 9: return segmenter9.get_weights();
case 10: return segmenter10.get_weights();
case 11: return segmenter11.get_weights();
case 12: return segmenter12.get_weights();
case 13: return segmenter13.get_weights();
case 14: return segmenter14.get_weights();
case 15: return segmenter15.get_weights();
default: throw dlib::error("Invalid mode");
}
}
friend void serialize (const segmenter_type& item, std::ostream& out)
{
serialize(item.mode, out);
switch(item.mode)
{
case 0: serialize(item.segmenter0, out); break;
case 1: serialize(item.segmenter1, out); break;
case 2: serialize(item.segmenter2, out); break;
case 3: serialize(item.segmenter3, out); break;
case 4: serialize(item.segmenter4, out); break;
case 5: serialize(item.segmenter5, out); break;
case 6: serialize(item.segmenter6, out); break;
case 7: serialize(item.segmenter7, out); break;
case 8: serialize(item.segmenter8, out); break;
case 9: serialize(item.segmenter9, out); break;
case 10: serialize(item.segmenter10, out); break;
case 11: serialize(item.segmenter11, out); break;
case 12: serialize(item.segmenter12, out); break;
case 13: serialize(item.segmenter13, out); break;
case 14: serialize(item.segmenter14, out); break;
case 15: serialize(item.segmenter15, out); break;
default: throw dlib::error("Invalid mode");
}
}
friend void deserialize (segmenter_type& item, std::istream& in)
{
deserialize(item.mode, in);
switch(item.mode)
{
case 0: deserialize(item.segmenter0, in); break;
case 1: deserialize(item.segmenter1, in); break;
case 2: deserialize(item.segmenter2, in); break;
case 3: deserialize(item.segmenter3, in); break;
case 4: deserialize(item.segmenter4, in); break;
case 5: deserialize(item.segmenter5, in); break;
case 6: deserialize(item.segmenter6, in); break;
case 7: deserialize(item.segmenter7, in); break;
case 8: deserialize(item.segmenter8, in); break;
case 9: deserialize(item.segmenter9, in); break;
case 10: deserialize(item.segmenter10, in); break;
case 11: deserialize(item.segmenter11, in); break;
case 12: deserialize(item.segmenter12, in); break;
case 13: deserialize(item.segmenter13, in); break;
case 14: deserialize(item.segmenter14, in); break;
case 15: deserialize(item.segmenter15, in); break;
default: throw dlib::error("Invalid mode");
}
}
int mode;
typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0;
typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1;
typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2;
typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3;
typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4;
typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5;
typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6;
typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7;
sequence_segmenter<fe0> segmenter0;
sequence_segmenter<fe1> segmenter1;
sequence_segmenter<fe2> segmenter2;
sequence_segmenter<fe3> segmenter3;
sequence_segmenter<fe4> segmenter4;
sequence_segmenter<fe5> segmenter5;
sequence_segmenter<fe6> segmenter6;
sequence_segmenter<fe7> segmenter7;
typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8;
typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9;
typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10;
typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11;
typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12;
typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13;
typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14;
typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15;
sequence_segmenter<fe8> segmenter8;
sequence_segmenter<fe9> segmenter9;
sequence_segmenter<fe10> segmenter10;
sequence_segmenter<fe11> segmenter11;
sequence_segmenter<fe12> segmenter12;
sequence_segmenter<fe13> segmenter13;
sequence_segmenter<fe14> segmenter14;
sequence_segmenter<fe15> segmenter15;
};
// ----------------------------------------------------------------------------------------
struct segmenter_params
{
segmenter_params()
{
use_BIO_model = true;
use_high_order_features = true;
allow_negative_weights = true;
window_size = 5;
num_threads = 4;
epsilon = 0.1;
max_cache_size = 40;
be_verbose = false;
C = 100;
}
bool use_BIO_model;
bool use_high_order_features;
bool allow_negative_weights;
unsigned long window_size;
unsigned long num_threads;
double epsilon;
unsigned long max_cache_size;
bool be_verbose;
double C;
};
string segmenter_params__str__(const segmenter_params& p)
{
ostringstream sout;
if (p.use_BIO_model)
sout << "BIO,";
else
sout << "BILOU,";
if (p.use_high_order_features)
sout << "highFeats,";
else
sout << "lowFeats,";
if (p.allow_negative_weights)
sout << "signed,";
else
sout << "non-negative,";
sout << "win="<<p.window_size << ",";
sout << "threads="<<p.num_threads << ",";
sout << "eps="<<p.epsilon << ",";
sout << "cache="<<p.max_cache_size << ",";
if (p.be_verbose)
sout << "verbose,";
else
sout << "non-verbose,";
sout << "C="<<p.C;
return trim(sout.str());
}
string segmenter_params__repr__(const segmenter_params& p)
{
ostringstream sout;
sout << "<";
sout << segmenter_params__str__(p);
sout << ">";
return sout.str();
}
void serialize ( const segmenter_params& item, std::ostream& out)
{
serialize(item.use_BIO_model, out);
serialize(item.use_high_order_features, out);
serialize(item.allow_negative_weights, out);
serialize(item.window_size, out);
serialize(item.num_threads, out);
serialize(item.epsilon, out);
serialize(item.max_cache_size, out);
serialize(item.be_verbose, out);
serialize(item.C, out);
}
void deserialize (segmenter_params& item, std::istream& in)
{
deserialize(item.use_BIO_model, in);
deserialize(item.use_high_order_features, in);
deserialize(item.allow_negative_weights, in);
deserialize(item.window_size, in);
deserialize(item.num_threads, in);
deserialize(item.epsilon, in);
deserialize(item.max_cache_size, in);
deserialize(item.be_verbose, in);
deserialize(item.C, in);
}
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<dense_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
{
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
pyassert(params.window_size != 0, "Invalid window_size parameter, it must be > 0.");
pyassert(params.epsilon > 0, "Invalid epsilon parameter, it must be > 0.");
pyassert(params.C > 0, "Invalid C parameter, it must be > 0.");
const long dims = samples[0][0].size();
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
trainer.set_num_threads(params.num_threads);
trainer.set_epsilon(params.epsilon);
trainer.set_max_cache_size(params.max_cache_size);
trainer.set_c(params.C);
if (params.be_verbose)
trainer.be_verbose();
}
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<sparse_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
{
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
unsigned long dims = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
dims = std::max(dims, max_index_plus_one(samples[i]));
}
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
trainer.set_num_threads(params.num_threads);
trainer.set_epsilon(params.epsilon);
trainer.set_max_cache_size(params.max_cache_size);
trainer.set_c(params.C);
if (params.be_verbose)
trainer.be_verbose();
}
// ----------------------------------------------------------------------------------------
segmenter_type train_dense (
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
segmenter_type res;
res.mode = mode;
switch(mode)
{
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
configure_trainer(samples, trainer, params);
res.segmenter0 = trainer.train(samples, segments);
} break;
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
configure_trainer(samples, trainer, params);
res.segmenter1 = trainer.train(samples, segments);
} break;
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
configure_trainer(samples, trainer, params);
res.segmenter2 = trainer.train(samples, segments);
} break;
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
configure_trainer(samples, trainer, params);
res.segmenter3 = trainer.train(samples, segments);
} break;
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
configure_trainer(samples, trainer, params);
res.segmenter4 = trainer.train(samples, segments);
} break;
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
configure_trainer(samples, trainer, params);
res.segmenter5 = trainer.train(samples, segments);
} break;
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
configure_trainer(samples, trainer, params);
res.segmenter6 = trainer.train(samples, segments);
} break;
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
configure_trainer(samples, trainer, params);
res.segmenter7 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
return res;
}
// ----------------------------------------------------------------------------------------
segmenter_type train_sparse (
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
mode += 8;
segmenter_type res;
res.mode = mode;
switch(mode)
{
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
configure_trainer(samples, trainer, params);
res.segmenter8 = trainer.train(samples, segments);
} break;
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
configure_trainer(samples, trainer, params);
res.segmenter9 = trainer.train(samples, segments);
} break;
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
configure_trainer(samples, trainer, params);
res.segmenter10 = trainer.train(samples, segments);
} break;
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
configure_trainer(samples, trainer, params);
res.segmenter11 = trainer.train(samples, segments);
} break;
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
configure_trainer(samples, trainer, params);
res.segmenter12 = trainer.train(samples, segments);
} break;
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
configure_trainer(samples, trainer, params);
res.segmenter13 = trainer.train(samples, segments);
} break;
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
configure_trainer(samples, trainer, params);
res.segmenter14 = trainer.train(samples, segments);
} break;
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
configure_trainer(samples, trainer, params);
res.segmenter15 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
return res;
}
// ----------------------------------------------------------------------------------------
struct segmenter_test
{
double precision;
double recall;
double f1;
};
void serialize(const segmenter_test& item, std::ostream& out)
{
serialize(item.precision, out);
serialize(item.recall, out);
serialize(item.f1, out);
}
void deserialize(segmenter_test& item, std::istream& in)
{
deserialize(item.precision, in);
deserialize(item.recall, in);
deserialize(item.f1, in);
}
std::string segmenter_test__str__(const segmenter_test& item)
{
std::ostringstream sout;
sout << "precision: "<< item.precision << " recall: "<< item.recall << " f1-score: " << item.f1;
return sout.str();
}
std::string segmenter_test__repr__(const segmenter_test& item) { return "< " + segmenter_test__str__(item) + " >";}
// ----------------------------------------------------------------------------------------
const segmenter_test test_sequence_segmenter1 (
const segmenter_type& segmenter,
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
matrix<double,1,3> res;
switch(segmenter.mode)
{
case 0: res = test_sequence_segmenter(segmenter.segmenter0, samples, segments); break;
case 1: res = test_sequence_segmenter(segmenter.segmenter1, samples, segments); break;
case 2: res = test_sequence_segmenter(segmenter.segmenter2, samples, segments); break;
case 3: res = test_sequence_segmenter(segmenter.segmenter3, samples, segments); break;
case 4: res = test_sequence_segmenter(segmenter.segmenter4, samples, segments); break;
case 5: res = test_sequence_segmenter(segmenter.segmenter5, samples, segments); break;
case 6: res = test_sequence_segmenter(segmenter.segmenter6, samples, segments); break;
case 7: res = test_sequence_segmenter(segmenter.segmenter7, samples, segments); break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
const segmenter_test test_sequence_segmenter2 (
const segmenter_type& segmenter,
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
matrix<double,1,3> res;
switch(segmenter.mode)
{
case 8: res = test_sequence_segmenter(segmenter.segmenter8, samples, segments); break;
case 9: res = test_sequence_segmenter(segmenter.segmenter9, samples, segments); break;
case 10: res = test_sequence_segmenter(segmenter.segmenter10, samples, segments); break;
case 11: res = test_sequence_segmenter(segmenter.segmenter11, samples, segments); break;
case 12: res = test_sequence_segmenter(segmenter.segmenter12, samples, segments); break;
case 13: res = test_sequence_segmenter(segmenter.segmenter13, samples, segments); break;
case 14: res = test_sequence_segmenter(segmenter.segmenter14, samples, segments); break;
case 15: res = test_sequence_segmenter(segmenter.segmenter15, samples, segments); break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
// ----------------------------------------------------------------------------------------
const segmenter_test cross_validate_sequence_segmenter1 (
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments,
long folds,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
matrix<double,1,3> res;
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
switch(mode)
{
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
const segmenter_test cross_validate_sequence_segmenter2 (
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments,
long folds,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
matrix<double,1,3> res;
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
mode += 8;
switch(mode)
{
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
// ----------------------------------------------------------------------------------------
void bind_sequence_segmenter(py::module& m)
{
py::class_<segmenter_params>(m, "segmenter_params",
"This class is used to define all the optional parameters to the \n\
train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ")
.def(py::init<>())
.def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
.def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
.def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
.def_readwrite("window_size", &segmenter_params::window_size)
.def_readwrite("num_threads", &segmenter_params::num_threads)
.def_readwrite("epsilon", &segmenter_params::epsilon)
.def_readwrite("max_cache_size", &segmenter_params::max_cache_size)
.def_readwrite("C", &segmenter_params::C, "SVM C parameter")
.def_readwrite("be_verbose", &segmenter_params::be_verbose)
.def("__repr__",&segmenter_params__repr__)
.def("__str__",&segmenter_params__str__)
.def(py::pickle(&getstate<segmenter_params>, &setstate<segmenter_params>));
py::class_<segmenter_type> (m, "segmenter_type", "This object represents a sequence segmenter and is the type of object "
"returned by the dlib.train_sequence_segmenter() routine.")
.def("__call__", &segmenter_type::segment_sequence_dense)
.def("__call__", &segmenter_type::segment_sequence_sparse)
.def_property_readonly("weights", &segmenter_type::get_weights)
.def(py::pickle(&getstate<segmenter_type>, &setstate<segmenter_type>));
py::class_<segmenter_test> (m, "segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and "
"dlib.cross_validate_sequence_segmenter() routines.")
.def_readwrite("precision", &segmenter_test::precision)
.def_readwrite("recall", &segmenter_test::recall)
.def_readwrite("f1", &segmenter_test::f1)
.def("__repr__",&segmenter_test__repr__)
.def("__str__",&segmenter_test__str__)
.def(py::pickle(&getstate<segmenter_test>, &setstate<segmenter_test>));
m.def("train_sequence_segmenter", train_dense, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
m.def("train_sequence_segmenter", train_sparse, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
m.def("test_sequence_segmenter", test_sequence_segmenter1);
m.def("test_sequence_segmenter", test_sequence_segmenter2);
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
}