|
|
|
|
|
|
|
#include "opaque_types.h" |
|
#include <dlib/python.h> |
|
#include <dlib/matrix.h> |
|
#include <dlib/svm_threaded.h> |
|
|
|
using namespace dlib; |
|
using namespace std; |
|
namespace py = pybind11; |
|
|
|
typedef matrix<double,0,1> dense_vect; |
|
typedef std::vector<std::pair<unsigned long,double> > sparse_vect; |
|
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges; |
|
|
|
|
|
|
|
template <typename samp_type, bool BIO, bool high_order, bool nonnegative> |
|
class segmenter_feature_extractor |
|
{ |
|
|
|
public: |
|
typedef std::vector<samp_type> sequence_type; |
|
const static bool use_BIO_model = BIO; |
|
const static bool use_high_order_features = high_order; |
|
const static bool allow_negative_weights = nonnegative; |
|
|
|
|
|
unsigned long _num_features; |
|
unsigned long _window_size; |
|
|
|
segmenter_feature_extractor( |
|
) : _num_features(1), _window_size(1) {} |
|
|
|
segmenter_feature_extractor( |
|
unsigned long _num_features_, |
|
unsigned long _window_size_ |
|
) : _num_features(_num_features_), _window_size(_window_size_) {} |
|
|
|
unsigned long num_features( |
|
) const { return _num_features; } |
|
|
|
unsigned long window_size( |
|
) const {return _window_size; } |
|
|
|
template <typename feature_setter> |
|
void get_features ( |
|
feature_setter& set_feature, |
|
const std::vector<dense_vect>& x, |
|
unsigned long position |
|
) const |
|
{ |
|
for (long i = 0; i < x[position].size(); ++i) |
|
{ |
|
set_feature(i, x[position](i)); |
|
} |
|
} |
|
|
|
template <typename feature_setter> |
|
void get_features ( |
|
feature_setter& set_feature, |
|
const std::vector<sparse_vect>& x, |
|
unsigned long position |
|
) const |
|
{ |
|
for (unsigned long i = 0; i < x[position].size(); ++i) |
|
{ |
|
set_feature(x[position][i].first, x[position][i].second); |
|
} |
|
} |
|
|
|
friend void serialize(const segmenter_feature_extractor& item, std::ostream& out) |
|
{ |
|
dlib::serialize(item._num_features, out); |
|
dlib::serialize(item._window_size, out); |
|
} |
|
friend void deserialize(segmenter_feature_extractor& item, std::istream& in) |
|
{ |
|
dlib::deserialize(item._num_features, in); |
|
dlib::deserialize(item._window_size, in); |
|
} |
|
}; |
|
|
|
|
|
|
|
struct segmenter_type |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
segmenter_type() : mode(-1) |
|
{ } |
|
|
|
ranges segment_sequence_dense ( |
|
const std::vector<dense_vect>& x |
|
) const |
|
{ |
|
switch (mode) |
|
{ |
|
case 0: return segmenter0(x); |
|
case 1: return segmenter1(x); |
|
case 2: return segmenter2(x); |
|
case 3: return segmenter3(x); |
|
case 4: return segmenter4(x); |
|
case 5: return segmenter5(x); |
|
case 6: return segmenter6(x); |
|
case 7: return segmenter7(x); |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
} |
|
|
|
ranges segment_sequence_sparse ( |
|
const std::vector<sparse_vect>& x |
|
) const |
|
{ |
|
switch (mode) |
|
{ |
|
case 8: return segmenter8(x); |
|
case 9: return segmenter9(x); |
|
case 10: return segmenter10(x); |
|
case 11: return segmenter11(x); |
|
case 12: return segmenter12(x); |
|
case 13: return segmenter13(x); |
|
case 14: return segmenter14(x); |
|
case 15: return segmenter15(x); |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
} |
|
|
|
const matrix<double,0,1> get_weights() |
|
{ |
|
switch(mode) |
|
{ |
|
case 0: return segmenter0.get_weights(); |
|
case 1: return segmenter1.get_weights(); |
|
case 2: return segmenter2.get_weights(); |
|
case 3: return segmenter3.get_weights(); |
|
case 4: return segmenter4.get_weights(); |
|
case 5: return segmenter5.get_weights(); |
|
case 6: return segmenter6.get_weights(); |
|
case 7: return segmenter7.get_weights(); |
|
|
|
case 8: return segmenter8.get_weights(); |
|
case 9: return segmenter9.get_weights(); |
|
case 10: return segmenter10.get_weights(); |
|
case 11: return segmenter11.get_weights(); |
|
case 12: return segmenter12.get_weights(); |
|
case 13: return segmenter13.get_weights(); |
|
case 14: return segmenter14.get_weights(); |
|
case 15: return segmenter15.get_weights(); |
|
|
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
} |
|
|
|
friend void serialize (const segmenter_type& item, std::ostream& out) |
|
{ |
|
serialize(item.mode, out); |
|
switch(item.mode) |
|
{ |
|
case 0: serialize(item.segmenter0, out); break; |
|
case 1: serialize(item.segmenter1, out); break; |
|
case 2: serialize(item.segmenter2, out); break; |
|
case 3: serialize(item.segmenter3, out); break; |
|
case 4: serialize(item.segmenter4, out); break; |
|
case 5: serialize(item.segmenter5, out); break; |
|
case 6: serialize(item.segmenter6, out); break; |
|
case 7: serialize(item.segmenter7, out); break; |
|
|
|
case 8: serialize(item.segmenter8, out); break; |
|
case 9: serialize(item.segmenter9, out); break; |
|
case 10: serialize(item.segmenter10, out); break; |
|
case 11: serialize(item.segmenter11, out); break; |
|
case 12: serialize(item.segmenter12, out); break; |
|
case 13: serialize(item.segmenter13, out); break; |
|
case 14: serialize(item.segmenter14, out); break; |
|
case 15: serialize(item.segmenter15, out); break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
} |
|
friend void deserialize (segmenter_type& item, std::istream& in) |
|
{ |
|
deserialize(item.mode, in); |
|
switch(item.mode) |
|
{ |
|
case 0: deserialize(item.segmenter0, in); break; |
|
case 1: deserialize(item.segmenter1, in); break; |
|
case 2: deserialize(item.segmenter2, in); break; |
|
case 3: deserialize(item.segmenter3, in); break; |
|
case 4: deserialize(item.segmenter4, in); break; |
|
case 5: deserialize(item.segmenter5, in); break; |
|
case 6: deserialize(item.segmenter6, in); break; |
|
case 7: deserialize(item.segmenter7, in); break; |
|
|
|
case 8: deserialize(item.segmenter8, in); break; |
|
case 9: deserialize(item.segmenter9, in); break; |
|
case 10: deserialize(item.segmenter10, in); break; |
|
case 11: deserialize(item.segmenter11, in); break; |
|
case 12: deserialize(item.segmenter12, in); break; |
|
case 13: deserialize(item.segmenter13, in); break; |
|
case 14: deserialize(item.segmenter14, in); break; |
|
case 15: deserialize(item.segmenter15, in); break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
} |
|
|
|
int mode; |
|
|
|
typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0; |
|
typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1; |
|
typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2; |
|
typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3; |
|
typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4; |
|
typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5; |
|
typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6; |
|
typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7; |
|
sequence_segmenter<fe0> segmenter0; |
|
sequence_segmenter<fe1> segmenter1; |
|
sequence_segmenter<fe2> segmenter2; |
|
sequence_segmenter<fe3> segmenter3; |
|
sequence_segmenter<fe4> segmenter4; |
|
sequence_segmenter<fe5> segmenter5; |
|
sequence_segmenter<fe6> segmenter6; |
|
sequence_segmenter<fe7> segmenter7; |
|
|
|
typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8; |
|
typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9; |
|
typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10; |
|
typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11; |
|
typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12; |
|
typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13; |
|
typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14; |
|
typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15; |
|
sequence_segmenter<fe8> segmenter8; |
|
sequence_segmenter<fe9> segmenter9; |
|
sequence_segmenter<fe10> segmenter10; |
|
sequence_segmenter<fe11> segmenter11; |
|
sequence_segmenter<fe12> segmenter12; |
|
sequence_segmenter<fe13> segmenter13; |
|
sequence_segmenter<fe14> segmenter14; |
|
sequence_segmenter<fe15> segmenter15; |
|
}; |
|
|
|
|
|
|
|
|
|
struct segmenter_params |
|
{ |
|
segmenter_params() |
|
{ |
|
use_BIO_model = true; |
|
use_high_order_features = true; |
|
allow_negative_weights = true; |
|
window_size = 5; |
|
num_threads = 4; |
|
epsilon = 0.1; |
|
max_cache_size = 40; |
|
be_verbose = false; |
|
C = 100; |
|
} |
|
|
|
bool use_BIO_model; |
|
bool use_high_order_features; |
|
bool allow_negative_weights; |
|
unsigned long window_size; |
|
unsigned long num_threads; |
|
double epsilon; |
|
unsigned long max_cache_size; |
|
bool be_verbose; |
|
double C; |
|
}; |
|
|
|
|
|
string segmenter_params__str__(const segmenter_params& p) |
|
{ |
|
ostringstream sout; |
|
if (p.use_BIO_model) |
|
sout << "BIO,"; |
|
else |
|
sout << "BILOU,"; |
|
|
|
if (p.use_high_order_features) |
|
sout << "highFeats,"; |
|
else |
|
sout << "lowFeats,"; |
|
|
|
if (p.allow_negative_weights) |
|
sout << "signed,"; |
|
else |
|
sout << "non-negative,"; |
|
|
|
sout << "win="<<p.window_size << ","; |
|
sout << "threads="<<p.num_threads << ","; |
|
sout << "eps="<<p.epsilon << ","; |
|
sout << "cache="<<p.max_cache_size << ","; |
|
if (p.be_verbose) |
|
sout << "verbose,"; |
|
else |
|
sout << "non-verbose,"; |
|
sout << "C="<<p.C; |
|
return trim(sout.str()); |
|
} |
|
|
|
string segmenter_params__repr__(const segmenter_params& p) |
|
{ |
|
ostringstream sout; |
|
sout << "<"; |
|
sout << segmenter_params__str__(p); |
|
sout << ">"; |
|
return sout.str(); |
|
} |
|
|
|
void serialize ( const segmenter_params& item, std::ostream& out) |
|
{ |
|
serialize(item.use_BIO_model, out); |
|
serialize(item.use_high_order_features, out); |
|
serialize(item.allow_negative_weights, out); |
|
serialize(item.window_size, out); |
|
serialize(item.num_threads, out); |
|
serialize(item.epsilon, out); |
|
serialize(item.max_cache_size, out); |
|
serialize(item.be_verbose, out); |
|
serialize(item.C, out); |
|
} |
|
|
|
void deserialize (segmenter_params& item, std::istream& in) |
|
{ |
|
deserialize(item.use_BIO_model, in); |
|
deserialize(item.use_high_order_features, in); |
|
deserialize(item.allow_negative_weights, in); |
|
deserialize(item.window_size, in); |
|
deserialize(item.num_threads, in); |
|
deserialize(item.epsilon, in); |
|
deserialize(item.max_cache_size, in); |
|
deserialize(item.be_verbose, in); |
|
deserialize(item.C, in); |
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
void configure_trainer ( |
|
const std::vector<std::vector<dense_vect> >& samples, |
|
structural_sequence_segmentation_trainer<T>& trainer, |
|
const segmenter_params& params |
|
) |
|
{ |
|
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences."); |
|
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences."); |
|
pyassert(params.window_size != 0, "Invalid window_size parameter, it must be > 0."); |
|
pyassert(params.epsilon > 0, "Invalid epsilon parameter, it must be > 0."); |
|
pyassert(params.C > 0, "Invalid C parameter, it must be > 0."); |
|
const long dims = samples[0][0].size(); |
|
|
|
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size)); |
|
trainer.set_num_threads(params.num_threads); |
|
trainer.set_epsilon(params.epsilon); |
|
trainer.set_max_cache_size(params.max_cache_size); |
|
trainer.set_c(params.C); |
|
if (params.be_verbose) |
|
trainer.be_verbose(); |
|
} |
|
|
|
|
|
|
|
template <typename T> |
|
void configure_trainer ( |
|
const std::vector<std::vector<sparse_vect> >& samples, |
|
structural_sequence_segmentation_trainer<T>& trainer, |
|
const segmenter_params& params |
|
) |
|
{ |
|
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences."); |
|
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences."); |
|
|
|
unsigned long dims = 0; |
|
for (unsigned long i = 0; i < samples.size(); ++i) |
|
{ |
|
dims = std::max(dims, max_index_plus_one(samples[i])); |
|
} |
|
|
|
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size)); |
|
trainer.set_num_threads(params.num_threads); |
|
trainer.set_epsilon(params.epsilon); |
|
trainer.set_max_cache_size(params.max_cache_size); |
|
trainer.set_c(params.C); |
|
if (params.be_verbose) |
|
trainer.be_verbose(); |
|
} |
|
|
|
|
|
|
|
segmenter_type train_dense ( |
|
const std::vector<std::vector<dense_vect> >& samples, |
|
const std::vector<ranges>& segments, |
|
segmenter_params params |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
|
|
int mode = 0; |
|
if (params.use_BIO_model) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.use_high_order_features) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.allow_negative_weights) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
|
|
|
|
segmenter_type res; |
|
res.mode = mode; |
|
switch(mode) |
|
{ |
|
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter0 = trainer.train(samples, segments); |
|
} break; |
|
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter1 = trainer.train(samples, segments); |
|
} break; |
|
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter2 = trainer.train(samples, segments); |
|
} break; |
|
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter3 = trainer.train(samples, segments); |
|
} break; |
|
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter4 = trainer.train(samples, segments); |
|
} break; |
|
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter5 = trainer.train(samples, segments); |
|
} break; |
|
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter6 = trainer.train(samples, segments); |
|
} break; |
|
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter7 = trainer.train(samples, segments); |
|
} break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
return res; |
|
} |
|
|
|
|
|
|
|
segmenter_type train_sparse ( |
|
const std::vector<std::vector<sparse_vect> >& samples, |
|
const std::vector<ranges>& segments, |
|
segmenter_params params |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
|
|
int mode = 0; |
|
if (params.use_BIO_model) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.use_high_order_features) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.allow_negative_weights) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
|
|
mode += 8; |
|
|
|
segmenter_type res; |
|
res.mode = mode; |
|
switch(mode) |
|
{ |
|
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter8 = trainer.train(samples, segments); |
|
} break; |
|
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter9 = trainer.train(samples, segments); |
|
} break; |
|
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter10 = trainer.train(samples, segments); |
|
} break; |
|
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter11 = trainer.train(samples, segments); |
|
} break; |
|
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter12 = trainer.train(samples, segments); |
|
} break; |
|
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter13 = trainer.train(samples, segments); |
|
} break; |
|
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter14 = trainer.train(samples, segments); |
|
} break; |
|
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res.segmenter15 = trainer.train(samples, segments); |
|
} break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
return res; |
|
} |
|
|
|
|
|
|
|
|
|
struct segmenter_test |
|
{ |
|
double precision; |
|
double recall; |
|
double f1; |
|
}; |
|
|
|
void serialize(const segmenter_test& item, std::ostream& out) |
|
{ |
|
serialize(item.precision, out); |
|
serialize(item.recall, out); |
|
serialize(item.f1, out); |
|
} |
|
|
|
void deserialize(segmenter_test& item, std::istream& in) |
|
{ |
|
deserialize(item.precision, in); |
|
deserialize(item.recall, in); |
|
deserialize(item.f1, in); |
|
} |
|
|
|
std::string segmenter_test__str__(const segmenter_test& item) |
|
{ |
|
std::ostringstream sout; |
|
sout << "precision: "<< item.precision << " recall: "<< item.recall << " f1-score: " << item.f1; |
|
return sout.str(); |
|
} |
|
std::string segmenter_test__repr__(const segmenter_test& item) { return "< " + segmenter_test__str__(item) + " >";} |
|
|
|
|
|
|
|
const segmenter_test test_sequence_segmenter1 ( |
|
const segmenter_type& segmenter, |
|
const std::vector<std::vector<dense_vect> >& samples, |
|
const std::vector<ranges>& segments |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
matrix<double,1,3> res; |
|
|
|
switch(segmenter.mode) |
|
{ |
|
case 0: res = test_sequence_segmenter(segmenter.segmenter0, samples, segments); break; |
|
case 1: res = test_sequence_segmenter(segmenter.segmenter1, samples, segments); break; |
|
case 2: res = test_sequence_segmenter(segmenter.segmenter2, samples, segments); break; |
|
case 3: res = test_sequence_segmenter(segmenter.segmenter3, samples, segments); break; |
|
case 4: res = test_sequence_segmenter(segmenter.segmenter4, samples, segments); break; |
|
case 5: res = test_sequence_segmenter(segmenter.segmenter5, samples, segments); break; |
|
case 6: res = test_sequence_segmenter(segmenter.segmenter6, samples, segments); break; |
|
case 7: res = test_sequence_segmenter(segmenter.segmenter7, samples, segments); break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
segmenter_test temp; |
|
temp.precision = res(0); |
|
temp.recall = res(1); |
|
temp.f1 = res(2); |
|
return temp; |
|
} |
|
|
|
const segmenter_test test_sequence_segmenter2 ( |
|
const segmenter_type& segmenter, |
|
const std::vector<std::vector<sparse_vect> >& samples, |
|
const std::vector<ranges>& segments |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
matrix<double,1,3> res; |
|
|
|
switch(segmenter.mode) |
|
{ |
|
case 8: res = test_sequence_segmenter(segmenter.segmenter8, samples, segments); break; |
|
case 9: res = test_sequence_segmenter(segmenter.segmenter9, samples, segments); break; |
|
case 10: res = test_sequence_segmenter(segmenter.segmenter10, samples, segments); break; |
|
case 11: res = test_sequence_segmenter(segmenter.segmenter11, samples, segments); break; |
|
case 12: res = test_sequence_segmenter(segmenter.segmenter12, samples, segments); break; |
|
case 13: res = test_sequence_segmenter(segmenter.segmenter13, samples, segments); break; |
|
case 14: res = test_sequence_segmenter(segmenter.segmenter14, samples, segments); break; |
|
case 15: res = test_sequence_segmenter(segmenter.segmenter15, samples, segments); break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
segmenter_test temp; |
|
temp.precision = res(0); |
|
temp.recall = res(1); |
|
temp.f1 = res(2); |
|
return temp; |
|
} |
|
|
|
|
|
|
|
const segmenter_test cross_validate_sequence_segmenter1 ( |
|
const std::vector<std::vector<dense_vect> >& samples, |
|
const std::vector<ranges>& segments, |
|
long folds, |
|
segmenter_params params |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range."); |
|
|
|
matrix<double,1,3> res; |
|
|
|
int mode = 0; |
|
if (params.use_BIO_model) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.use_high_order_features) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.allow_negative_weights) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
|
|
|
|
switch(mode) |
|
{ |
|
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
segmenter_test temp; |
|
temp.precision = res(0); |
|
temp.recall = res(1); |
|
temp.f1 = res(2); |
|
return temp; |
|
} |
|
|
|
const segmenter_test cross_validate_sequence_segmenter2 ( |
|
const std::vector<std::vector<sparse_vect> >& samples, |
|
const std::vector<ranges>& segments, |
|
long folds, |
|
segmenter_params params |
|
) |
|
{ |
|
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs"); |
|
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range."); |
|
|
|
matrix<double,1,3> res; |
|
|
|
int mode = 0; |
|
if (params.use_BIO_model) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.use_high_order_features) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
if (params.allow_negative_weights) |
|
mode = mode*2 + 1; |
|
else |
|
mode = mode*2; |
|
|
|
mode += 8; |
|
|
|
switch(mode) |
|
{ |
|
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer; |
|
configure_trainer(samples, trainer, params); |
|
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds); |
|
} break; |
|
default: throw dlib::error("Invalid mode"); |
|
} |
|
|
|
|
|
segmenter_test temp; |
|
temp.precision = res(0); |
|
temp.recall = res(1); |
|
temp.f1 = res(2); |
|
return temp; |
|
} |
|
|
|
|
|
|
|
void bind_sequence_segmenter(py::module& m) |
|
{ |
|
py::class_<segmenter_params>(m, "segmenter_params", |
|
"This class is used to define all the optional parameters to the \n\ |
|
train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ") |
|
.def(py::init<>()) |
|
.def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model) |
|
.def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features) |
|
.def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights) |
|
.def_readwrite("window_size", &segmenter_params::window_size) |
|
.def_readwrite("num_threads", &segmenter_params::num_threads) |
|
.def_readwrite("epsilon", &segmenter_params::epsilon) |
|
.def_readwrite("max_cache_size", &segmenter_params::max_cache_size) |
|
.def_readwrite("C", &segmenter_params::C, "SVM C parameter") |
|
.def_readwrite("be_verbose", &segmenter_params::be_verbose) |
|
.def("__repr__",&segmenter_params__repr__) |
|
.def("__str__",&segmenter_params__str__) |
|
.def(py::pickle(&getstate<segmenter_params>, &setstate<segmenter_params>)); |
|
|
|
py::class_<segmenter_type> (m, "segmenter_type", "This object represents a sequence segmenter and is the type of object " |
|
"returned by the dlib.train_sequence_segmenter() routine.") |
|
.def("__call__", &segmenter_type::segment_sequence_dense) |
|
.def("__call__", &segmenter_type::segment_sequence_sparse) |
|
.def_property_readonly("weights", &segmenter_type::get_weights) |
|
.def(py::pickle(&getstate<segmenter_type>, &setstate<segmenter_type>)); |
|
|
|
py::class_<segmenter_test> (m, "segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and " |
|
"dlib.cross_validate_sequence_segmenter() routines.") |
|
.def_readwrite("precision", &segmenter_test::precision) |
|
.def_readwrite("recall", &segmenter_test::recall) |
|
.def_readwrite("f1", &segmenter_test::f1) |
|
.def("__repr__",&segmenter_test__repr__) |
|
.def("__str__",&segmenter_test__str__) |
|
.def(py::pickle(&getstate<segmenter_test>, &setstate<segmenter_test>)); |
|
|
|
m.def("train_sequence_segmenter", train_dense, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params()); |
|
m.def("train_sequence_segmenter", train_sparse, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params()); |
|
|
|
|
|
m.def("test_sequence_segmenter", test_sequence_segmenter1); |
|
m.def("test_sequence_segmenter", test_sequence_segmenter2); |
|
|
|
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1, |
|
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params()); |
|
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2, |
|
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params()); |
|
} |
|
|
|
|
|
|
|
|
|
|