|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import Conv2d, BatchNorm2d, PReLU, Sequential, Module |
|
|
|
from models.encoders.helpers import get_blocks, bottleneck_IR, bottleneck_IR_SE |
|
from models.stylegan2.model import EqualLinear |
|
|
|
|
|
class GradualStyleBlock(Module): |
|
def __init__(self, in_c, out_c, spatial): |
|
super(GradualStyleBlock, self).__init__() |
|
self.out_c = out_c |
|
self.spatial = spatial |
|
num_pools = int(np.log2(spatial)) |
|
modules = [] |
|
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1), nn.LeakyReLU()] |
|
for i in range(num_pools - 1): |
|
modules += [ |
|
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1), nn.LeakyReLU() |
|
] |
|
self.convs = nn.Sequential(*modules) |
|
self.linear = EqualLinear(out_c, out_c, lr_mul=1) |
|
|
|
def forward(self, x): |
|
x = self.convs(x) |
|
x = x.view(-1, self.out_c) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class GradualStyleEncoder(Module): |
|
def __init__(self, num_layers, mode='ir', n_styles=18, opts=None): |
|
super(GradualStyleEncoder, self).__init__() |
|
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152' |
|
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se' |
|
blocks = get_blocks(num_layers) |
|
if mode == 'ir': |
|
unit_module = bottleneck_IR |
|
elif mode == 'ir_se': |
|
unit_module = bottleneck_IR_SE |
|
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False), |
|
BatchNorm2d(64), |
|
PReLU(64)) |
|
modules = [] |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append(unit_module(bottleneck.in_channel, |
|
bottleneck.depth, |
|
bottleneck.stride)) |
|
self.body = Sequential(*modules) |
|
|
|
self.styles = nn.ModuleList() |
|
self.style_count = n_styles |
|
self.coarse_ind = 3 |
|
self.middle_ind = 7 |
|
for i in range(self.style_count): |
|
if i < self.coarse_ind: |
|
style = GradualStyleBlock(512, 512, 16) |
|
elif i < self.middle_ind: |
|
style = GradualStyleBlock(512, 512, 32) |
|
else: |
|
style = GradualStyleBlock(512, 512, 64) |
|
self.styles.append(style) |
|
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0) |
|
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0) |
|
|
|
def _upsample_add(self, x, y): |
|
'''Upsample and add two feature maps. |
|
Args: |
|
x: (Variable) top feature map to be upsampled. |
|
y: (Variable) lateral feature map. |
|
Returns: |
|
(Variable) added feature map. |
|
Note in PyTorch, when input size is odd, the upsampled feature map |
|
with `F.upsample(..., scale_factor=2, mode='nearest')` |
|
maybe not equal to the lateral feature map size. |
|
e.g. |
|
original input size: [N,_,15,15] -> |
|
conv2d feature map size: [N,_,8,8] -> |
|
upsampled feature map size: [N,_,16,16] |
|
So we choose bilinear upsample which supports arbitrary output sizes. |
|
''' |
|
_, _, H, W = y.size() |
|
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y |
|
|
|
def forward(self, x): |
|
x = self.input_layer(x) |
|
|
|
latents = [] |
|
modulelist = list(self.body._modules.values()) |
|
for i, l in enumerate(modulelist): |
|
x = l(x) |
|
if i == 6: |
|
c1 = x |
|
elif i == 20: |
|
c2 = x |
|
elif i == 23: |
|
c3 = x |
|
|
|
for j in range(self.coarse_ind): |
|
latents.append(self.styles[j](c3)) |
|
|
|
p2 = self._upsample_add(c3, self.latlayer1(c2)) |
|
for j in range(self.coarse_ind, self.middle_ind): |
|
latents.append(self.styles[j](p2)) |
|
|
|
p1 = self._upsample_add(p2, self.latlayer2(c1)) |
|
for j in range(self.middle_ind, self.style_count): |
|
latents.append(self.styles[j](p1)) |
|
|
|
out = torch.stack(latents, dim=1) |
|
return out |
|
|