AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
22.3 kB
// Copyright (C) 2011 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_POLY_ImAGE_Hh_
#define DLIB_POLY_ImAGE_Hh_
#include "poly_image_abstract.h"
#include "build_separable_poly_filters.h"
#include "../algs.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../geometry.h"
#include <cmath>
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
long Downsample
>
class poly_image : noncopyable
{
COMPILE_TIME_ASSERT(Downsample >= 1);
public:
const static long downsample = Downsample;
typedef matrix<double, 0, 1> descriptor_type;
poly_image(
long order_,
long window_size_,
bool normalization = true,
bool rotation_invariance_ = false
)
{
setup(order_, window_size_);
set_uses_normalization(normalization);
set_is_rotationally_invariant(rotation_invariance_);
}
poly_image (
)
{
clear();
}
void clear (
)
{
normalize = true;
rotation_invariance = false;
poly_coef.clear();
order = 3;
window_size = 13;
border_size = (long)std::ceil(std::floor(window_size/2.0)/downsample);
num_rows = 0;
num_cols = 0;
filters = build_separable_poly_filters(order, window_size);
}
long get_order (
) const
{
return order;
}
long get_window_size (
) const
{
return window_size;
}
void setup (
long order_,
long window_size_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(1 <= order_ && order_ <= 6 &&
window_size_ >= 3 && (window_size_%2) == 1,
"\t descriptor_type poly_image::setup()"
<< "\n\t Invalid arguments were given to this function."
<< "\n\t order_: " << order_
<< "\n\t window_size_: " << window_size_
<< "\n\t this: " << this
);
poly_coef.clear();
order = order_;
window_size = window_size_;
border_size = (long)std::ceil(std::floor(window_size/2.0)/downsample);
num_rows = 0;
num_cols = 0;
filters = build_separable_poly_filters(order, window_size);
}
bool uses_normalization (
) const { return normalize; }
void set_uses_normalization (
bool normalization
)
{
normalize = normalization;
}
bool is_rotationally_invariant (
) const { return rotation_invariance; }
void set_is_rotationally_invariant (
bool rotation_invariance_
)
{
rotation_invariance = rotation_invariance_;
}
void copy_configuration (
const poly_image& item
)
{
normalize = item.normalize;
rotation_invariance = item.rotation_invariance;
if (order != item.order ||
window_size != item.window_size)
{
order = item.order;
window_size = item.window_size;
border_size = item.border_size;
filters = item.filters;
}
}
template <
typename image_type
>
inline void load (
const image_type& img
)
{
COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<image_type>::pixel_type>::has_alpha == false );
poly_coef.resize(get_num_dimensions());
des.set_size(get_num_dimensions());
if (normalize)
{
array2d<float> coef0;
rectangle rect = filter_image(img, coef0, filters[0]);
num_rows = rect.height();
num_cols = rect.width();
for (unsigned long i = 1; i < filters.size(); ++i)
{
filter_image(img, poly_coef[i-1], filters[i]);
// intensity normalize everything
for (long r = 0; r < coef0.nr(); ++r)
{
for (long c = 0; c < coef0.nc(); ++c)
{
if (coef0[r][c] >= 1)
poly_coef[i-1][r][c] /= coef0[r][c];
else
poly_coef[i-1][r][c] = 0;
}
}
}
if (rotation_invariance)
rotate_polys(rect);
}
else
{
rectangle rect;
for (unsigned long i = 0; i < filters.size(); ++i)
{
rect = filter_image(img, poly_coef[i], filters[i]);
}
num_rows = rect.height();
num_cols = rect.width();
if (rotation_invariance)
rotate_polys(rect);
}
}
void unload()
{
poly_coef.clear();
num_rows = 0;
num_cols = 0;
}
inline size_t size (
) const { return static_cast<unsigned long>(nr()*nc()); }
inline long nr (
) const { return num_rows; }
inline long nc (
) const { return num_cols; }
long get_num_dimensions (
) const
{
if (normalize)
{
// -1 because we discard the constant term of the polynomial.
return filters.size()-1;
}
else
{
return filters.size();
}
}
inline const descriptor_type& operator() (
long row,
long col
) const
{
// make sure requires clause is not broken
DLIB_ASSERT( 0 <= row && row < nr() &&
0 <= col && col < nc(),
"\t descriptor_type poly_image::operator()()"
<< "\n\t invalid row or col argument"
<< "\n\t row: " << row
<< "\n\t col: " << col
<< "\n\t nr(): " << nr()
<< "\n\t nc(): " << nc()
<< "\n\t this: " << this
);
// add because of the zero border around the poly_coef images
row += border_size;
col += border_size;
for (long i = 0; i < des.size(); ++i)
des(i) = poly_coef[i][row][col];
return des;
}
const rectangle get_block_rect (
long row,
long col
) const
{
return centered_rect(Downsample*point(col+border_size, row+border_size),
window_size, window_size);
}
const point image_to_feat_space (
const point& p
) const
{
return p/Downsample - point(border_size, border_size);
}
const rectangle image_to_feat_space (
const rectangle& rect
) const
{
return rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
}
const point feat_to_image_space (
const point& p
) const
{
return (p + point(border_size, border_size))*Downsample;
}
const rectangle feat_to_image_space (
const rectangle& rect
) const
{
return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
}
friend void serialize (const poly_image& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.poly_coef, out);
serialize(item.order, out);
serialize(item.window_size, out);
serialize(item.border_size, out);
serialize(item.num_rows, out);
serialize(item.num_cols, out);
serialize(item.normalize, out);
serialize(item.rotation_invariance, out);
serialize(item.filters, out);
}
friend void deserialize (poly_image& item, std::istream& in )
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw dlib::serialization_error("Unexpected version found while deserializing dlib::poly_image");
deserialize(item.poly_coef, in);
deserialize(item.order, in);
deserialize(item.window_size, in);
deserialize(item.border_size, in);
deserialize(item.num_rows, in);
deserialize(item.num_cols, in);
deserialize(item.normalize, in);
deserialize(item.rotation_invariance, in);
deserialize(item.filters, in);
}
private:
matrix<float,2,1> rotate_order_1 (
const matrix<float,2,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
matrix<double,2,2> M;
M = w1, w2,
w2, -w1;
matrix<double,2,1> x;
x = cos_theta,
sin_theta;
return matrix_cast<float>(M*x);
}
matrix<float,3,1> rotate_order_2 (
const matrix<float,3,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
matrix<double,3,3> M;
M = w1, w2, w3,
w2, (2*w3-2*w1), -w2,
w3, -w2, w1;
matrix<double,3,1> x;
x = std::pow(cos_theta,2.0),
cos_theta*sin_theta,
std::pow(sin_theta,2.0);
return matrix_cast<float>(M*x);
}
matrix<float,4,1> rotate_order_3 (
const matrix<float,4,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
matrix<double,4,4> M;
M = w1, w2, w3, w4,
w2, (2*w3-3*w1), (3*w4-2*w2), -w3,
w3, (3*w4-2*w2), (3*w1-2*w3), w2,
w4, -w3, w2, -w1;
matrix<double,4,1> x;
x = std::pow(cos_theta,3.0),
std::pow(cos_theta,2.0)*sin_theta,
cos_theta*std::pow(sin_theta,2.0),
std::pow(sin_theta,3.0);
return matrix_cast<float>(M*x);
}
matrix<float,5,1> rotate_order_4 (
const matrix<float,5,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
matrix<double,5,5> M;
M = w1, w2, w3, w4, w5,
w2, (2*w3-4*w1), (3*w4-3*w2), (4*w5-2*w3), -w4,
w3, (3*w4-3*w2), (6*w1-4*w3+6*w5), (3*w2-3*w4), w3,
w4, (4*w5-2*w3), (3*w2-3*w4), (2*w3-4*w1), -w2,
w5, -w4, w3, -w2, w1;
matrix<double,5,1> x;
x = std::pow(cos_theta,4.0),
std::pow(cos_theta,3.0)*sin_theta,
std::pow(cos_theta,2.0)*std::pow(sin_theta,2.0),
cos_theta*std::pow(sin_theta,3.0),
std::pow(sin_theta,4.0);
return matrix_cast<float>(M*x);
}
matrix<float,6,1> rotate_order_5 (
const matrix<float,6,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
const double w6 = w(5);
matrix<double,6,6> M;
M = w1, w2, w3, w4, w5, w6,
w2, (2*w3-5*w1), (3*w4-4*w2), (4*w5-3*w3), (5*w6-2*w4), -w5,
w3, (3*w4-4*w2), (10*w1-6*w3+6*w5), (6*w2-6*w4+10*w6), (3*w3-4*w5), w4,
w4, (4*w5-3*w3), (6*w2-6*w4+10*w6), (-10*w1+6*w3-6*w5), (3*w4-4*w2), -w3,
w5, (5*w6-2*w4), (3*w3-4*w5), (3*w4-4*w2), (5*w1-2*w3), w2,
w6, -w5, w4, -w3, w2, -w1;
matrix<double,6,1> x;
x = std::pow(cos_theta,5.0),
std::pow(cos_theta,4.0)*sin_theta,
std::pow(cos_theta,3.0)*std::pow(sin_theta,2.0),
std::pow(cos_theta,2.0)*std::pow(sin_theta,3.0),
cos_theta*std::pow(sin_theta,4.0),
std::pow(sin_theta,5.0);
return matrix_cast<float>(M*x);
}
matrix<float,7,1> rotate_order_6 (
const matrix<float,7,1>& w,
double cos_theta,
double sin_theta
) const
{
const double w1 = w(0);
const double w2 = w(1);
const double w3 = w(2);
const double w4 = w(3);
const double w5 = w(4);
const double w6 = w(5);
const double w7 = w(6);
matrix<double,7,7> M;
M = w1, w2, w3, w4, w5, w6, w7,
w2, (2*w3-6*w1), (3*w4-5*w2), (4*w5-4*w3), (5*w6-3*w4), (6*w7-2*w5), -w6,
w3, (3*w4-5*w2), (15*w1-8*w3+ 6*w5), ( 10*w2 -9*w4+10*w6), ( 6*w3-8*w5+15*w7), (3*w4-5*w6), w5,
w4, (4*w5-4*w3), (10*w2-9*w4+10*w6), (-20*w1+12*w3-12*w5+20*w7), (-10*w2+9*w4-10*w6), (4*w5-4*w3), -w4,
w5, (5*w6-3*w4), ( 6*w3-8*w5+15*w7), (-10*w2 +9*w4-10*w6), ( 15*w1-8*w3 +6*w5), (5*w2-3*w4), w3,
w6, (6*w7-2*w5), (3*w4-5*w6), (4*w5-4*w3), (5*w2-3*w4), (2*w3-6*w1), -w2,
w7, -w6, w5, -w4, w3, -w2, w1;
matrix<double,7,1> x;
x = std::pow(cos_theta,6.0),
std::pow(cos_theta,5.0)*sin_theta,
std::pow(cos_theta,4.0)*std::pow(sin_theta,2.0),
std::pow(cos_theta,3.0)*std::pow(sin_theta,3.0),
std::pow(cos_theta,2.0)*std::pow(sin_theta,4.0),
cos_theta*std::pow(sin_theta,5.0),
std::pow(sin_theta,6.0);
return matrix_cast<float>(M*x);
}
void rotate_polys (
const rectangle& rect
)
/*!
ensures
- rotates all the polynomials in poly_coef so that they are
rotationally invariant
!*/
{
// The idea here is to use a rotation matrix to rotate the
// coordinate system for the polynomial so that the x axis
// always lines up with the gradient vector (or direction of
// max curvature). This way we can make the representation
// rotation invariant.
// Note that the rotation matrix is given by:
// [ cos_theta -sin_theta ]
// [ sin_theta cos_theta ]
// need to offset poly_coef to get past the constant term if there isn't any normalization.
const int off = (normalize) ? 0 : 1;
for (long r = rect.top(); r <= rect.bottom(); ++r)
{
for (long c = rect.left(); c <= rect.right(); ++c)
{
dlib::vector<double,2> g(poly_coef[off+0][r][c],
poly_coef[off+1][r][c]);
const double len = g.length();
if (len != 0)
{
g /= len;
}
else
{
g.x() = 1;
g.y() = 0;
}
// since we normalized g we can find the sin/cos of its angle easily.
const double cos_theta = g.x();
const double sin_theta = g.y();
if (order >= 1)
{
matrix<float,2,1> w;
w = poly_coef[off+0][r][c],
poly_coef[off+1][r][c];
w = rotate_order_1(w, cos_theta, sin_theta);
poly_coef[off+0][r][c] = w(0);
poly_coef[off+1][r][c] = w(1);
}
if (order >= 2)
{
matrix<float,3,1> w;
w = poly_coef[off+2][r][c],
poly_coef[off+3][r][c],
poly_coef[off+4][r][c];
w = rotate_order_2(w, cos_theta, sin_theta);
poly_coef[off+2][r][c] = w(0);
poly_coef[off+3][r][c] = w(1);
poly_coef[off+4][r][c] = w(2);
}
if (order >= 3)
{
matrix<float,4,1> w;
w = poly_coef[off+5][r][c],
poly_coef[off+6][r][c],
poly_coef[off+7][r][c],
poly_coef[off+8][r][c];
w = rotate_order_3(w, cos_theta, sin_theta);
poly_coef[off+5][r][c] = w(0);
poly_coef[off+6][r][c] = w(1);
poly_coef[off+7][r][c] = w(2);
poly_coef[off+8][r][c] = w(3);
}
if (order >= 4)
{
matrix<float,5,1> w;
w = poly_coef[off+9][r][c],
poly_coef[off+10][r][c],
poly_coef[off+11][r][c],
poly_coef[off+12][r][c],
poly_coef[off+13][r][c];
w = rotate_order_4(w, cos_theta, sin_theta);
poly_coef[off+9][r][c] = w(0);
poly_coef[off+10][r][c] = w(1);
poly_coef[off+11][r][c] = w(2);
poly_coef[off+12][r][c] = w(3);
poly_coef[off+13][r][c] = w(4);
}
if (order >= 5)
{
matrix<float,6,1> w;
w = poly_coef[off+14][r][c],
poly_coef[off+15][r][c],
poly_coef[off+16][r][c],
poly_coef[off+17][r][c],
poly_coef[off+18][r][c],
poly_coef[off+19][r][c];
w = rotate_order_5(w, cos_theta, sin_theta);
poly_coef[off+14][r][c] = w(0);
poly_coef[off+15][r][c] = w(1);
poly_coef[off+16][r][c] = w(2);
poly_coef[off+17][r][c] = w(3);
poly_coef[off+18][r][c] = w(4);
poly_coef[off+19][r][c] = w(5);
}
if (order >= 6)
{
matrix<float,7,1> w;
w = poly_coef[off+20][r][c],
poly_coef[off+21][r][c],
poly_coef[off+22][r][c],
poly_coef[off+23][r][c],
poly_coef[off+24][r][c],
poly_coef[off+25][r][c],
poly_coef[off+26][r][c];
w = rotate_order_6(w, cos_theta, sin_theta);
poly_coef[off+20][r][c] = w(0);
poly_coef[off+21][r][c] = w(1);
poly_coef[off+22][r][c] = w(2);
poly_coef[off+23][r][c] = w(3);
poly_coef[off+24][r][c] = w(4);
poly_coef[off+25][r][c] = w(5);
poly_coef[off+26][r][c] = w(6);
}
}
}
}
template <typename image_type>
rectangle filter_image (
const image_type& img,
array2d<float>& out,
const std::vector<separable_filter_type>& filter
) const
{
rectangle rect = spatially_filter_image_separable_down(downsample, img, out, filter[0].first, filter[0].second);
for (unsigned long i = 1; i < filter.size(); ++i)
{
spatially_filter_image_separable_down(downsample, img, out, filter[i].first, filter[i].second, 1, false, true);
}
return rect;
}
std::vector<std::vector<separable_filter_type> > filters;
dlib::array<array2d<float> > poly_coef;
long order;
long window_size;
long border_size;
long num_rows;
long num_cols;
bool normalize;
bool rotation_invariance;
mutable descriptor_type des;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POLY_ImAGE_Hh_