AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
9.44 kB
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_GPU_DaTA_CPP_
#define DLIB_GPU_DaTA_CPP_
// Only things that require CUDA are declared in this cpp file. Everything else is in the
// gpu_data.h header so that it can operate as "header-only" code when using just the CPU.
#ifdef DLIB_USE_CUDA
#include "gpu_data.h"
#include <iostream>
#include "cuda_utils.h"
#include <cstring>
#include <cuda.h>
namespace dlib
{
// ----------------------------------------------------------------------------------------
void memcpy (
gpu_data& dest,
const gpu_data& src
)
{
DLIB_CASSERT(dest.size() == src.size());
if (src.size() == 0 || &dest == &src)
return;
memcpy(dest,0, src, 0, src.size());
}
void memcpy (
gpu_data& dest,
size_t dest_offset,
const gpu_data& src,
size_t src_offset,
size_t num
)
{
DLIB_CASSERT(dest_offset + num <= dest.size());
DLIB_CASSERT(src_offset + num <= src.size());
if (num == 0)
return;
// if there is aliasing
if (&dest == &src && std::max(dest_offset, src_offset) < std::min(dest_offset,src_offset)+num)
{
// if they perfectly alias each other then there is nothing to do
if (dest_offset == src_offset)
return;
else
std::memmove(dest.host()+dest_offset, src.host()+src_offset, sizeof(float)*num);
}
else
{
// if we write to the entire thing then we can use device_write_only()
if (dest_offset == 0 && num == dest.size())
{
// copy the memory efficiently based on which copy is current in each object.
if (src.device_ready())
CHECK_CUDA(cudaMemcpy(dest.device_write_only(), src.device()+src_offset, num*sizeof(float), cudaMemcpyDeviceToDevice));
else
CHECK_CUDA(cudaMemcpy(dest.device_write_only(), src.host()+src_offset, num*sizeof(float), cudaMemcpyHostToDevice));
}
else
{
// copy the memory efficiently based on which copy is current in each object.
if (dest.device_ready() && src.device_ready())
CHECK_CUDA(cudaMemcpy(dest.device()+dest_offset, src.device()+src_offset, num*sizeof(float), cudaMemcpyDeviceToDevice));
else if (!dest.device_ready() && src.device_ready())
CHECK_CUDA(cudaMemcpy(dest.host()+dest_offset, src.device()+src_offset, num*sizeof(float), cudaMemcpyDeviceToHost));
else if (dest.device_ready() && !src.device_ready())
CHECK_CUDA(cudaMemcpy(dest.device()+dest_offset, src.host()+src_offset, num*sizeof(float), cudaMemcpyHostToDevice));
else
CHECK_CUDA(cudaMemcpy(dest.host()+dest_offset, src.host()+src_offset, num*sizeof(float), cudaMemcpyHostToHost));
}
}
}
// ----------------------------------------------------------------------------------------
void synchronize_stream(cudaStream_t stream)
{
#if !defined CUDA_VERSION
#error CUDA_VERSION not defined
#elif CUDA_VERSION >= 9020 && CUDA_VERSION < 11000
// We will stop using this alternative version with cuda V11, hopefully the bug in
// cudaStreamSynchronize is fixed by then.
//
// This should be pretty much the same as cudaStreamSynchronize, which for some
// reason makes training freeze in some cases.
// (see https://github.com/davisking/dlib/issues/1513)
while (true)
{
cudaError_t err = cudaStreamQuery(stream);
switch (err)
{
case cudaSuccess: return; // now we are synchronized
case cudaErrorNotReady: break; // continue waiting
default: CHECK_CUDA(err); // unexpected error: throw
}
}
#else // CUDA_VERSION
CHECK_CUDA(cudaStreamSynchronize(stream));
#endif // CUDA_VERSION
}
void gpu_data::
wait_for_transfer_to_finish() const
{
if (have_active_transfer)
{
synchronize_stream((cudaStream_t)cuda_stream.get());
have_active_transfer = false;
// Check for errors. These calls to cudaGetLastError() are what help us find
// out if our kernel launches have been failing.
CHECK_CUDA(cudaGetLastError());
}
}
void gpu_data::
copy_to_device() const
{
// We want transfers to the device to always be concurrent with any device
// computation. So we use our non-default stream to do the transfer.
async_copy_to_device();
wait_for_transfer_to_finish();
}
void gpu_data::
copy_to_host() const
{
if (!host_current)
{
wait_for_transfer_to_finish();
CHECK_CUDA(cudaMemcpy(data_host.get(), data_device.get(), data_size*sizeof(float), cudaMemcpyDeviceToHost));
host_current = true;
// At this point we know our RAM block isn't in use because cudaMemcpy()
// implicitly syncs with the device.
device_in_use = false;
// Check for errors. These calls to cudaGetLastError() are what help us find
// out if our kernel launches have been failing.
CHECK_CUDA(cudaGetLastError());
}
}
void gpu_data::
async_copy_to_device() const
{
if (!device_current)
{
if (device_in_use)
{
// Wait for any possible CUDA kernels that might be using our memory block to
// complete before we overwrite the memory.
synchronize_stream(0);
device_in_use = false;
}
CHECK_CUDA(cudaMemcpyAsync(data_device.get(), data_host.get(), data_size*sizeof(float), cudaMemcpyHostToDevice, (cudaStream_t)cuda_stream.get()));
have_active_transfer = true;
device_current = true;
}
}
void gpu_data::
set_size(
size_t new_size
)
{
if (new_size == 0)
{
if (device_in_use)
{
// Wait for any possible CUDA kernels that might be using our memory block to
// complete before we free the memory.
synchronize_stream(0);
device_in_use = false;
}
wait_for_transfer_to_finish();
data_size = 0;
host_current = true;
device_current = true;
device_in_use = false;
data_host.reset();
data_device.reset();
}
else if (new_size != data_size)
{
if (device_in_use)
{
// Wait for any possible CUDA kernels that might be using our memory block to
// complete before we free the memory.
synchronize_stream(0);
device_in_use = false;
}
wait_for_transfer_to_finish();
data_size = new_size;
host_current = true;
device_current = true;
device_in_use = false;
try
{
CHECK_CUDA(cudaGetDevice(&the_device_id));
// free memory blocks before we allocate new ones.
data_host.reset();
data_device.reset();
void* data;
CHECK_CUDA(cudaMallocHost(&data, new_size*sizeof(float)));
// Note that we don't throw exceptions since the free calls are invariably
// called in destructors. They also shouldn't fail anyway unless someone
// is resetting the GPU card in the middle of their program.
data_host.reset((float*)data, [](float* ptr){
auto err = cudaFreeHost(ptr);
if(err!=cudaSuccess)
std::cerr << "cudaFreeHost() failed. Reason: " << cudaGetErrorString(err) << std::endl;
});
CHECK_CUDA(cudaMalloc(&data, new_size*sizeof(float)));
data_device.reset((float*)data, [](float* ptr){
auto err = cudaFree(ptr);
if(err!=cudaSuccess)
std::cerr << "cudaFree() failed. Reason: " << cudaGetErrorString(err) << std::endl;
});
if (!cuda_stream)
{
cudaStream_t cstream;
CHECK_CUDA(cudaStreamCreateWithFlags(&cstream, cudaStreamNonBlocking));
cuda_stream.reset(cstream, [](void* ptr){
auto err = cudaStreamDestroy((cudaStream_t)ptr);
if(err!=cudaSuccess)
std::cerr << "cudaStreamDestroy() failed. Reason: " << cudaGetErrorString(err) << std::endl;
});
}
}
catch(...)
{
set_size(0);
throw;
}
}
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_USE_CUDA
#endif // DLIB_GPU_DaTA_CPP_