|
from torch.utils.data import Dataset |
|
from PIL import Image |
|
from utils import data_utils |
|
|
|
|
|
class ImagesDataset(Dataset): |
|
|
|
def __init__(self, source_root, target_root, opts, target_transform=None, source_transform=None): |
|
self.source_paths = sorted(data_utils.make_dataset(source_root)) |
|
self.target_paths = sorted(data_utils.make_dataset(target_root)) |
|
self.source_transform = source_transform |
|
self.target_transform = target_transform |
|
self.opts = opts |
|
|
|
def __len__(self): |
|
return len(self.source_paths) |
|
|
|
def __getitem__(self, index): |
|
from_path = self.source_paths[index] |
|
from_im = Image.open(from_path) |
|
from_im = from_im.convert('RGB') if self.opts.label_nc == 0 else from_im.convert('L') |
|
|
|
to_path = self.target_paths[index] |
|
to_im = Image.open(to_path).convert('RGB') |
|
if self.target_transform: |
|
to_im = self.target_transform(to_im) |
|
|
|
if self.source_transform: |
|
from_im = self.source_transform(from_im) |
|
else: |
|
from_im = to_im |
|
|
|
return from_im, to_im |
|
|