AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
11.7 kB
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SHAPE_PREDICTOR_H__
#define DLIB_SHAPE_PREDICTOR_H__
#include "dlib/string.h"
#include "dlib/geometry.h"
#include "dlib/data_io/load_image_dataset.h"
#include "dlib/image_processing.h"
using namespace std;
namespace dlib
{
// ----------------------------------------------------------------------------------------
struct shape_predictor_training_options
{
shape_predictor_training_options()
{
be_verbose = false;
cascade_depth = 10;
tree_depth = 4;
num_trees_per_cascade_level = 500;
nu = 0.1;
oversampling_amount = 20;
oversampling_translation_jitter = 0;
feature_pool_size = 400;
lambda_param = 0.1;
num_test_splits = 20;
feature_pool_region_padding = 0;
random_seed = "";
num_threads = 0;
landmark_relative_padding_mode = true;
}
bool be_verbose;
unsigned long cascade_depth;
unsigned long tree_depth;
unsigned long num_trees_per_cascade_level;
double nu;
unsigned long oversampling_amount;
double oversampling_translation_jitter;
unsigned long feature_pool_size;
double lambda_param;
unsigned long num_test_splits;
double feature_pool_region_padding;
std::string random_seed;
bool landmark_relative_padding_mode;
// not serialized
unsigned long num_threads;
};
inline void serialize (
const shape_predictor_training_options& item,
std::ostream& out
)
{
try
{
serialize("shape_predictor_training_options_v2", out);
serialize(item.be_verbose,out);
serialize(item.cascade_depth,out);
serialize(item.tree_depth,out);
serialize(item.num_trees_per_cascade_level,out);
serialize(item.nu,out);
serialize(item.oversampling_amount,out);
serialize(item.oversampling_translation_jitter,out);
serialize(item.feature_pool_size,out);
serialize(item.lambda_param,out);
serialize(item.num_test_splits,out);
serialize(item.feature_pool_region_padding,out);
serialize(item.random_seed,out);
serialize(item.landmark_relative_padding_mode,out);
}
catch (serialization_error& e)
{
throw serialization_error(e.info + "\n while serializing an object of type shape_predictor_training_options");
}
}
inline void deserialize (
shape_predictor_training_options& item,
std::istream& in
)
{
try
{
check_serialized_version("shape_predictor_training_options_v2", in);
deserialize(item.be_verbose,in);
deserialize(item.cascade_depth,in);
deserialize(item.tree_depth,in);
deserialize(item.num_trees_per_cascade_level,in);
deserialize(item.nu,in);
deserialize(item.oversampling_amount,in);
deserialize(item.oversampling_translation_jitter,in);
deserialize(item.feature_pool_size,in);
deserialize(item.lambda_param,in);
deserialize(item.num_test_splits,in);
deserialize(item.feature_pool_region_padding,in);
deserialize(item.random_seed,in);
deserialize(item.landmark_relative_padding_mode,in);
}
catch (serialization_error& e)
{
throw serialization_error(e.info + "\n while deserializing an object of type shape_predictor_training_options");
}
}
inline string print_shape_predictor_training_options(const shape_predictor_training_options& o)
{
std::ostringstream sout;
sout << "shape_predictor_training_options("
<< "be_verbose=" << o.be_verbose << ", "
<< "cascade_depth=" << o.cascade_depth << ", "
<< "tree_depth=" << o.tree_depth << ", "
<< "num_trees_per_cascade_level=" << o.num_trees_per_cascade_level << ", "
<< "nu=" << o.nu << ", "
<< "oversampling_amount=" << o.oversampling_amount << ", "
<< "oversampling_translation_jitter=" << o.oversampling_translation_jitter << ", "
<< "feature_pool_size=" << o.feature_pool_size << ", "
<< "lambda_param=" << o.lambda_param << ", "
<< "num_test_splits=" << o.num_test_splits << ", "
<< "feature_pool_region_padding=" << o.feature_pool_region_padding << ", "
<< "random_seed=" << o.random_seed << ", "
<< "num_threads=" << o.num_threads << ", "
<< "landmark_relative_padding_mode=" << o.landmark_relative_padding_mode
<< ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
namespace impl
{
inline bool contains_any_detections (
const std::vector<std::vector<full_object_detection> >& detections
)
{
for (unsigned long i = 0; i < detections.size(); ++i)
{
if (detections[i].size() != 0)
return true;
}
return false;
}
}
// ----------------------------------------------------------------------------------------
template <typename image_array>
inline shape_predictor train_shape_predictor_on_images (
image_array& images,
std::vector<std::vector<full_object_detection> >& detections,
const shape_predictor_training_options& options
)
{
if (options.lambda_param <= 0)
throw error("Invalid lambda_param value given to train_shape_predictor(), lambda_param must be > 0.");
if (!(0 < options.nu && options.nu <= 1))
throw error("Invalid nu value given to train_shape_predictor(). It is required that 0 < nu <= 1.");
if (options.feature_pool_region_padding <= -0.5)
throw error("Invalid feature_pool_region_padding value given to train_shape_predictor(), feature_pool_region_padding must be > -0.5.");
if (images.size() != detections.size())
throw error("The list of images must have the same length as the list of detections.");
if (!impl::contains_any_detections(detections))
throw error("Error, the training dataset does not have any labeled object detections in it.");
shape_predictor_trainer trainer;
trainer.set_cascade_depth(options.cascade_depth);
trainer.set_tree_depth(options.tree_depth);
trainer.set_num_trees_per_cascade_level(options.num_trees_per_cascade_level);
trainer.set_nu(options.nu);
trainer.set_random_seed(options.random_seed);
trainer.set_oversampling_amount(options.oversampling_amount);
trainer.set_oversampling_translation_jitter(options.oversampling_translation_jitter);
trainer.set_feature_pool_size(options.feature_pool_size);
trainer.set_feature_pool_region_padding(options.feature_pool_region_padding);
trainer.set_lambda(options.lambda_param);
trainer.set_num_test_splits(options.num_test_splits);
trainer.set_num_threads(options.num_threads);
if (options.landmark_relative_padding_mode)
trainer.set_padding_mode(shape_predictor_trainer::landmark_relative);
else
trainer.set_padding_mode(shape_predictor_trainer::bounding_box_relative);
if (options.be_verbose)
{
std::cout << "Training with cascade depth: " << options.cascade_depth << std::endl;
std::cout << "Training with tree depth: " << options.tree_depth << std::endl;
std::cout << "Training with " << options.num_trees_per_cascade_level << " trees per cascade level."<< std::endl;
std::cout << "Training with nu: " << options.nu << std::endl;
std::cout << "Training with random seed: " << options.random_seed << std::endl;
std::cout << "Training with oversampling amount: " << options.oversampling_amount << std::endl;
std::cout << "Training with oversampling translation jitter: " << options.oversampling_translation_jitter << std::endl;
std::cout << "Training with landmark_relative_padding_mode: " << options.landmark_relative_padding_mode << std::endl;
std::cout << "Training with feature pool size: " << options.feature_pool_size << std::endl;
std::cout << "Training with feature pool region padding: " << options.feature_pool_region_padding << std::endl;
std::cout << "Training with " << options.num_threads << " threads." << std::endl;
std::cout << "Training with lambda_param: " << options.lambda_param << std::endl;
std::cout << "Training with " << options.num_test_splits << " split tests."<< std::endl;
trainer.be_verbose();
}
shape_predictor predictor = trainer.train(images, detections);
return predictor;
}
inline void train_shape_predictor (
const std::string& dataset_filename,
const std::string& predictor_output_filename,
const shape_predictor_training_options& options
)
{
dlib::array<array2d<unsigned char> > images;
std::vector<std::vector<full_object_detection> > objects;
load_image_dataset(images, objects, dataset_filename);
shape_predictor predictor = train_shape_predictor_on_images(images, objects, options);
serialize(predictor_output_filename) << predictor;
if (options.be_verbose)
std::cout << "Training complete, saved predictor to file " << predictor_output_filename << std::endl;
}
// ----------------------------------------------------------------------------------------
template <typename image_array>
inline double test_shape_predictor_with_images (
image_array& images,
std::vector<std::vector<full_object_detection> >& detections,
std::vector<std::vector<double> >& scales,
const shape_predictor& predictor
)
{
if (images.size() != detections.size())
throw error("The list of images must have the same length as the list of detections.");
if (scales.size() > 0 && scales.size() != images.size())
throw error("The list of scales must have the same length as the list of detections.");
if (scales.size() > 0)
return test_shape_predictor(predictor, images, detections, scales);
else
return test_shape_predictor(predictor, images, detections);
}
inline double test_shape_predictor_py (
const std::string& dataset_filename,
const std::string& predictor_filename
)
{
// Load the images, no scales can be provided
dlib::array<array2d<unsigned char> > images;
// This interface cannot take the scales parameter.
std::vector<std::vector<double> > scales;
std::vector<std::vector<full_object_detection> > objects;
load_image_dataset(images, objects, dataset_filename);
// Load the shape predictor
shape_predictor predictor;
deserialize(predictor_filename) >> predictor;
return test_shape_predictor_with_images(images, objects, scales, predictor);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SHAPE_PREDICTOR_H__