AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
34.5 kB
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNn_INPUT_H_
#define DLIB_DNn_INPUT_H_
#include "input_abstract.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../pixel.h"
#include "../image_processing.h"
#include <sstream>
#include <array>
#include "../cuda/tensor_tools.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <typename T>
class input
{
const static bool always_false = sizeof(T)!=sizeof(T);
static_assert(always_false, "Unsupported type given to input<>. input<> only supports "
"dlib::matrix and dlib::array2d objects.");
};
// ----------------------------------------------------------------------------------------
template <size_t NR, size_t NC=NR>
class input_rgb_image_sized;
class input_rgb_image
{
public:
typedef matrix<rgb_pixel> input_type;
input_rgb_image (
) :
avg_red(122.782),
avg_green(117.001),
avg_blue(104.298)
{
}
input_rgb_image (
float avg_red_,
float avg_green_,
float avg_blue_
) : avg_red(avg_red_), avg_green(avg_green_), avg_blue(avg_blue_)
{}
template <size_t NR, size_t NC>
inline input_rgb_image (
const input_rgb_image_sized<NR,NC>& item
);
float get_avg_red() const { return avg_red; }
float get_avg_green() const { return avg_green; }
float get_avg_blue() const { return avg_blue; }
bool image_contained_point ( const tensor& data, const point& p) const { return get_rect(data).contains(p); }
drectangle tensor_space_to_image_space ( const tensor& /*data*/, drectangle r) const { return r; }
drectangle image_space_to_tensor_space ( const tensor& /*data*/, double /*scale*/, drectangle r ) const { return r; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0);
const auto nr = ibegin->nr();
const auto nc = ibegin->nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr()==nr && i->nc()==nc,
"\t input_rgb_image::to_tensor()"
<< "\n\t All matrices given to to_tensor() must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t i->nr(): " << i->nr()
<< "\n\t i->nc(): " << i->nc()
);
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), 3, nr, nc);
const size_t offset = nr*nc;
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
rgb_pixel temp = (*i)(r,c);
auto p = ptr++;
*p = (temp.red-avg_red)/256.0;
p += offset;
*p = (temp.green-avg_green)/256.0;
p += offset;
*p = (temp.blue-avg_blue)/256.0;
p += offset;
}
}
ptr += offset*(data.k()-1);
}
}
friend void serialize(const input_rgb_image& item, std::ostream& out)
{
serialize("input_rgb_image", out);
serialize(item.avg_red, out);
serialize(item.avg_green, out);
serialize(item.avg_blue, out);
}
friend void deserialize(input_rgb_image& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input_rgb_image" && version != "input_rgb_image_sized")
throw serialization_error("Unexpected version found while deserializing dlib::input_rgb_image.");
deserialize(item.avg_red, in);
deserialize(item.avg_green, in);
deserialize(item.avg_blue, in);
// read and discard the sizes if this was really a sized input layer.
if (version == "input_rgb_image_sized")
{
size_t nr, nc;
deserialize(nr, in);
deserialize(nc, in);
}
}
friend std::ostream& operator<<(std::ostream& out, const input_rgb_image& item)
{
out << "input_rgb_image("<<item.avg_red<<","<<item.avg_green<<","<<item.avg_blue<<")";
return out;
}
friend void to_xml(const input_rgb_image& item, std::ostream& out)
{
out << "<input_rgb_image r='"<<item.avg_red<<"' g='"<<item.avg_green<<"' b='"<<item.avg_blue<<"'/>";
}
private:
float avg_red;
float avg_green;
float avg_blue;
};
// ----------------------------------------------------------------------------------------
template <size_t NR, size_t NC>
class input_rgb_image_sized
{
public:
static_assert(NR != 0 && NC != 0, "The input image can't be empty.");
typedef matrix<rgb_pixel> input_type;
input_rgb_image_sized (
) :
avg_red(122.782),
avg_green(117.001),
avg_blue(104.298)
{
}
input_rgb_image_sized (
const input_rgb_image& item
) : avg_red(item.get_avg_red()),
avg_green(item.get_avg_green()),
avg_blue(item.get_avg_blue())
{}
input_rgb_image_sized (
float avg_red_,
float avg_green_,
float avg_blue_
) : avg_red(avg_red_), avg_green(avg_green_), avg_blue(avg_blue_)
{}
float get_avg_red() const { return avg_red; }
float get_avg_green() const { return avg_green; }
float get_avg_blue() const { return avg_blue; }
bool image_contained_point ( const tensor& data, const point& p) const { return get_rect(data).contains(p); }
drectangle tensor_space_to_image_space ( const tensor& /*data*/, drectangle r) const { return r; }
drectangle image_space_to_tensor_space ( const tensor& /*data*/, double /*scale*/, drectangle r ) const { return r; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0);
// make sure all input images have the correct size
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr()==NR && i->nc()==NC,
"\t input_rgb_image_sized::to_tensor()"
<< "\n\t All input images must have "<<NR<<" rows and "<<NC<< " columns, but we got one with "<<i->nr()<<" rows and "<<i->nc()<<" columns."
);
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), 3, NR, NC);
const size_t offset = NR*NC;
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (size_t r = 0; r < NR; ++r)
{
for (size_t c = 0; c < NC; ++c)
{
rgb_pixel temp = (*i)(r,c);
auto p = ptr++;
*p = (temp.red-avg_red)/256.0;
p += offset;
*p = (temp.green-avg_green)/256.0;
p += offset;
*p = (temp.blue-avg_blue)/256.0;
p += offset;
}
}
ptr += offset*(data.k()-1);
}
}
friend void serialize(const input_rgb_image_sized& item, std::ostream& out)
{
serialize("input_rgb_image_sized", out);
serialize(item.avg_red, out);
serialize(item.avg_green, out);
serialize(item.avg_blue, out);
serialize(NR, out);
serialize(NC, out);
}
friend void deserialize(input_rgb_image_sized& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input_rgb_image_sized")
throw serialization_error("Unexpected version found while deserializing dlib::input_rgb_image_sized.");
deserialize(item.avg_red, in);
deserialize(item.avg_green, in);
deserialize(item.avg_blue, in);
size_t nr, nc;
deserialize(nr, in);
deserialize(nc, in);
if (nr != NR || nc != NC)
{
std::ostringstream sout;
sout << "Wrong image dimensions found while deserializing dlib::input_rgb_image_sized.\n";
sout << "Expected "<<NR<<" rows and "<<NC<< " columns, but found "<<nr<<" rows and "<<nc<<" columns.";
throw serialization_error(sout.str());
}
}
friend std::ostream& operator<<(std::ostream& out, const input_rgb_image_sized& item)
{
out << "input_rgb_image_sized("<<item.avg_red<<","<<item.avg_green<<","<<item.avg_blue<<") nr="<<NR<<" nc="<<NC;
return out;
}
friend void to_xml(const input_rgb_image_sized& item, std::ostream& out)
{
out << "<input_rgb_image_sized r='"<<item.avg_red<<"' g='"<<item.avg_green<<"' b='"<<item.avg_blue<<"' nr='"<<NR<<"' nc='"<<NC<<"'/>";
}
private:
float avg_red;
float avg_green;
float avg_blue;
};
// ----------------------------------------------------------------------------------------
template <size_t NR, size_t NC>
input_rgb_image::
input_rgb_image (
const input_rgb_image_sized<NR,NC>& item
) : avg_red(item.get_avg_red()),
avg_green(item.get_avg_green()),
avg_blue(item.get_avg_blue())
{}
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename MM, typename L>
class input<matrix<T,NR,NC,MM,L>>
{
public:
typedef matrix<T,NR,NC,MM,L> input_type;
input() {}
input(const input&) {}
template <typename mm>
input(const input<array2d<T,mm>>&) {}
bool image_contained_point ( const tensor& data, const point& p) const { return get_rect(data).contains(p); }
drectangle tensor_space_to_image_space ( const tensor& /*data*/, drectangle r) const { return r; }
drectangle image_space_to_tensor_space ( const tensor& /*data*/, double /*scale*/, drectangle r ) const { return r; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0);
const auto nr = ibegin->nr();
const auto nc = ibegin->nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr()==nr && i->nc()==nc,
"\t input::to_tensor()"
<< "\n\t All matrices given to to_tensor() must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t i->nr(): " << i->nr()
<< "\n\t i->nc(): " << i->nc()
);
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), pixel_traits<T>::num, nr, nc);
typedef typename pixel_traits<T>::basic_pixel_type bptype;
const size_t offset = nr*nc;
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
auto temp = pixel_to_vector<float>((*i)(r,c));
auto p = ptr++;
for (long j = 0; j < temp.size(); ++j)
{
if (is_same_type<bptype,unsigned char>::value)
*p = temp(j)/256.0;
else
*p = temp(j);
p += offset;
}
}
}
ptr += offset*(data.k()-1);
}
}
friend void serialize(const input& /*item*/, std::ostream& out)
{
serialize("input<matrix>", out);
}
friend void deserialize(input& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input<matrix>")
throw serialization_error("Unexpected version found while deserializing dlib::input.");
}
friend std::ostream& operator<<(std::ostream& out, const input& /*item*/)
{
out << "input<matrix>";
return out;
}
friend void to_xml(const input& /*item*/, std::ostream& out)
{
out << "<input/>";
}
};
// ----------------------------------------------------------------------------------------
template <typename T, long NR, long NC, typename MM, typename L, size_t K>
class input<std::array<matrix<T,NR,NC,MM,L>,K>>
{
public:
typedef std::array<matrix<T,NR,NC,MM,L>,K> input_type;
input() {}
input(const input&) {}
bool image_contained_point ( const tensor& data, const point& p) const { return get_rect(data).contains(p); }
drectangle tensor_space_to_image_space ( const tensor& /*data*/, drectangle r) const { return r; }
drectangle image_space_to_tensor_space ( const tensor& /*data*/, double /*scale*/, drectangle r ) const { return r; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0);
DLIB_CASSERT(ibegin->size() != 0, "When using std::array<matrix> inputs you can't give 0 sized arrays.");
const auto nr = (*ibegin)[0].nr();
const auto nc = (*ibegin)[0].nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
for (size_t k = 0; k < K; ++k)
{
const auto& arr = *i;
DLIB_CASSERT(arr[k].nr()==nr && arr[k].nc()==nc,
"\t input::to_tensor()"
<< "\n\t When using std::array<matrix> as input, all matrices in a batch must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t k: " << k
<< "\n\t arr[k].nr(): " << arr[k].nr()
<< "\n\t arr[k].nc(): " << arr[k].nc()
);
}
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), K, nr, nc);
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (size_t k = 0; k < K; ++k)
{
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
if (is_same_type<T,unsigned char>::value)
*ptr++ = (*i)[k](r,c)/256.0;
else
*ptr++ = (*i)[k](r,c);
}
}
}
}
}
friend void serialize(const input& /*item*/, std::ostream& out)
{
serialize("input<array<matrix>>", out);
}
friend void deserialize(input& /*item*/, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input<array<matrix>>")
throw serialization_error("Unexpected version found while deserializing dlib::input<array<matrix>>.");
}
friend std::ostream& operator<<(std::ostream& out, const input& /*item*/)
{
out << "input<array<matrix>>";
return out;
}
friend void to_xml(const input& /*item*/, std::ostream& out)
{
out << "<input/>";
}
};
// ----------------------------------------------------------------------------------------
template <typename T, typename MM>
class input<array2d<T,MM>>
{
public:
typedef array2d<T,MM> input_type;
input() {}
input(const input&) {}
template <long NR, long NC, typename mm, typename L>
input(const input<matrix<T,NR,NC,mm,L>>&) {}
bool image_contained_point ( const tensor& data, const point& p) const { return get_rect(data).contains(p); }
drectangle tensor_space_to_image_space ( const tensor& /*data*/, drectangle r) const { return r; }
drectangle image_space_to_tensor_space ( const tensor& /*data*/, double /*scale*/, drectangle r ) const { return r; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
DLIB_CASSERT(std::distance(ibegin,iend) > 0);
const auto nr = ibegin->nr();
const auto nc = ibegin->nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr()==nr && i->nc()==nc,
"\t input::to_tensor()"
<< "\n\t All array2d objects given to to_tensor() must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t i->nr(): " << i->nr()
<< "\n\t i->nc(): " << i->nc()
);
}
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin,iend), pixel_traits<T>::num, nr, nc);
typedef typename pixel_traits<T>::basic_pixel_type bptype;
const size_t offset = nr*nc;
auto ptr = data.host();
for (auto i = ibegin; i != iend; ++i)
{
for (long r = 0; r < nr; ++r)
{
for (long c = 0; c < nc; ++c)
{
auto temp = pixel_to_vector<float>((*i)[r][c]);
auto p = ptr++;
for (long j = 0; j < temp.size(); ++j)
{
if (is_same_type<bptype,unsigned char>::value)
*p = temp(j)/256.0;
else
*p = temp(j);
p += offset;
}
}
}
ptr += offset*(data.k()-1);
}
}
friend void serialize(const input& item, std::ostream& out)
{
serialize("input<array2d>", out);
}
friend void deserialize(input& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input<array2d>")
throw serialization_error("Unexpected version found while deserializing dlib::input.");
}
friend std::ostream& operator<<(std::ostream& out, const input& item)
{
out << "input<array2d>";
return out;
}
friend void to_xml(const input& item, std::ostream& out)
{
out << "<input/>";
}
};
// ----------------------------------------------------------------------------------------
namespace detail {
template <typename PYRAMID_TYPE>
class input_image_pyramid
{
public:
virtual ~input_image_pyramid() = 0;
typedef PYRAMID_TYPE pyramid_type;
unsigned long get_pyramid_padding() const { return pyramid_padding; }
void set_pyramid_padding(unsigned long value) { pyramid_padding = value; }
unsigned long get_pyramid_outer_padding() const { return pyramid_outer_padding; }
void set_pyramid_outer_padding(unsigned long value) { pyramid_outer_padding = value; }
bool image_contained_point(
const tensor& data,
const point& p
) const
{
auto&& rects = any_cast<std::vector<rectangle>>(data.annotation());
DLIB_CASSERT(rects.size() > 0);
return rects[0].contains(p + rects[0].tl_corner());
}
drectangle tensor_space_to_image_space(
const tensor& data,
drectangle r
) const
{
auto&& rects = any_cast<std::vector<rectangle>>(data.annotation());
return tiled_pyramid_to_image<pyramid_type>(rects, r);
}
drectangle image_space_to_tensor_space (
const tensor& data,
double scale,
drectangle r
) const
{
DLIB_CASSERT(0 < scale && scale <= 1, "scale: " << scale);
auto&& rects = any_cast<std::vector<rectangle>>(data.annotation());
return image_to_tiled_pyramid<pyramid_type>(rects, scale, r);
}
protected:
template <typename forward_iterator>
void to_tensor_init (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor &data,
unsigned int k
) const
{
DLIB_CASSERT(std::distance(ibegin, iend) > 0);
auto nr = ibegin->nr();
auto nc = ibegin->nc();
// make sure all the input matrices have the same dimensions
for (auto i = ibegin; i != iend; ++i)
{
DLIB_CASSERT(i->nr() == nr && i->nc() == nc,
"\t input_grayscale_image_pyramid::to_tensor()"
<< "\n\t All matrices given to to_tensor() must have the same dimensions."
<< "\n\t nr: " << nr
<< "\n\t nc: " << nc
<< "\n\t i->nr(): " << i->nr()
<< "\n\t i->nc(): " << i->nc()
);
}
long NR, NC;
pyramid_type pyr;
auto& rects = data.annotation().get<std::vector<rectangle>>();
impl::compute_tiled_image_pyramid_details(pyr, nr, nc, pyramid_padding, pyramid_outer_padding, rects,
NR, NC);
// initialize data to the right size to contain the stuff in the iterator range.
data.set_size(std::distance(ibegin, iend), k, NR, NC);
// We need to zero the image before doing the pyramid, since the pyramid
// creation code doesn't write to all parts of the image. We also take
// care to avoid triggering any device to hosts copies.
auto ptr = data.host_write_only();
for (size_t i = 0; i < data.size(); ++i)
ptr[i] = 0;
}
// now build the image pyramid into data. This does the same thing as
// standard create_tiled_pyramid(), except we use the GPU if one is available.
void create_tiled_pyramid (
const std::vector<rectangle>& rects,
resizable_tensor& data
) const
{
for (size_t i = 1; i < rects.size(); ++i) {
alias_tensor src(data.num_samples(), data.k(), rects[i - 1].height(), rects[i - 1].width());
alias_tensor dest(data.num_samples(), data.k(), rects[i].height(), rects[i].width());
auto asrc = src(data, data.nc() * rects[i - 1].top() + rects[i - 1].left());
auto adest = dest(data, data.nc() * rects[i].top() + rects[i].left());
tt::resize_bilinear(adest, data.nc(), data.nr() * data.nc(),
asrc, data.nc(), data.nr() * data.nc());
}
}
unsigned long pyramid_padding = 10;
unsigned long pyramid_outer_padding = 11;
};
template <typename PYRAMID_TYPE>
input_image_pyramid<PYRAMID_TYPE>::~input_image_pyramid() {}
}
// ----------------------------------------------------------------------------------------
template <typename PYRAMID_TYPE>
class input_grayscale_image_pyramid : public detail::input_image_pyramid<PYRAMID_TYPE>
{
public:
typedef matrix<unsigned char> input_type;
typedef PYRAMID_TYPE pyramid_type;
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
this->to_tensor_init(ibegin, iend, data, 1);
const auto rects = data.annotation().get<std::vector<rectangle>>();
if (rects.size() == 0)
return;
// copy the first raw image into the top part of the tiled pyramid. We need to
// do this for each of the input images/samples in the tensor.
auto ptr = data.host_write_only();
for (auto i = ibegin; i != iend; ++i)
{
auto& img = *i;
ptr += rects[0].top()*data.nc();
for (long r = 0; r < img.nr(); ++r)
{
auto p = ptr+rects[0].left();
for (long c = 0; c < img.nc(); ++c)
p[c] = (img(r,c))/256.0;
ptr += data.nc();
}
ptr += data.nc()*(data.nr()-rects[0].bottom()-1);
}
this->create_tiled_pyramid(rects, data);
}
friend void serialize(const input_grayscale_image_pyramid& item, std::ostream& out)
{
serialize("input_grayscale_image_pyramid", out);
serialize(item.pyramid_padding, out);
serialize(item.pyramid_outer_padding, out);
}
friend void deserialize(input_grayscale_image_pyramid& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input_grayscale_image_pyramid")
throw serialization_error("Unexpected version found while deserializing dlib::input_grayscale_image_pyramid.");
deserialize(item.pyramid_padding, in);
deserialize(item.pyramid_outer_padding, in);
}
friend std::ostream& operator<<(std::ostream& out, const input_grayscale_image_pyramid& item)
{
out << "input_grayscale_image_pyramid()";
out << " pyramid_padding="<<item.pyramid_padding;
out << " pyramid_outer_padding="<<item.pyramid_outer_padding;
return out;
}
friend void to_xml(const input_grayscale_image_pyramid& item, std::ostream& out)
{
out << "<input_grayscale_image_pyramid"
<<"' pyramid_padding='"<<item.pyramid_padding
<<"' pyramid_outer_padding='"<<item.pyramid_outer_padding
<<"'/>";
}
};
// ----------------------------------------------------------------------------------------
template <typename PYRAMID_TYPE>
class input_rgb_image_pyramid : public detail::input_image_pyramid<PYRAMID_TYPE>
{
public:
typedef matrix<rgb_pixel> input_type;
typedef PYRAMID_TYPE pyramid_type;
input_rgb_image_pyramid (
) :
avg_red(122.782),
avg_green(117.001),
avg_blue(104.298)
{
}
input_rgb_image_pyramid (
float avg_red_,
float avg_green_,
float avg_blue_
) : avg_red(avg_red_), avg_green(avg_green_), avg_blue(avg_blue_)
{}
float get_avg_red() const { return avg_red; }
float get_avg_green() const { return avg_green; }
float get_avg_blue() const { return avg_blue; }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
this->to_tensor_init(ibegin, iend, data, 3);
const auto rects = data.annotation().get<std::vector<rectangle>>();
if (rects.size() == 0)
return;
// copy the first raw image into the top part of the tiled pyramid. We need to
// do this for each of the input images/samples in the tensor.
auto ptr = data.host_write_only();
for (auto i = ibegin; i != iend; ++i)
{
auto& img = *i;
ptr += rects[0].top()*data.nc();
for (long r = 0; r < img.nr(); ++r)
{
auto p = ptr+rects[0].left();
for (long c = 0; c < img.nc(); ++c)
p[c] = (img(r,c).red-avg_red)/256.0;
ptr += data.nc();
}
ptr += data.nc()*(data.nr()-rects[0].bottom()-1);
ptr += rects[0].top()*data.nc();
for (long r = 0; r < img.nr(); ++r)
{
auto p = ptr+rects[0].left();
for (long c = 0; c < img.nc(); ++c)
p[c] = (img(r,c).green-avg_green)/256.0;
ptr += data.nc();
}
ptr += data.nc()*(data.nr()-rects[0].bottom()-1);
ptr += rects[0].top()*data.nc();
for (long r = 0; r < img.nr(); ++r)
{
auto p = ptr+rects[0].left();
for (long c = 0; c < img.nc(); ++c)
p[c] = (img(r,c).blue-avg_blue)/256.0;
ptr += data.nc();
}
ptr += data.nc()*(data.nr()-rects[0].bottom()-1);
}
this->create_tiled_pyramid(rects, data);
}
friend void serialize(const input_rgb_image_pyramid& item, std::ostream& out)
{
serialize("input_rgb_image_pyramid2", out);
serialize(item.avg_red, out);
serialize(item.avg_green, out);
serialize(item.avg_blue, out);
serialize(item.pyramid_padding, out);
serialize(item.pyramid_outer_padding, out);
}
friend void deserialize(input_rgb_image_pyramid& item, std::istream& in)
{
std::string version;
deserialize(version, in);
if (version != "input_rgb_image_pyramid" && version != "input_rgb_image_pyramid2")
throw serialization_error("Unexpected version found while deserializing dlib::input_rgb_image_pyramid.");
deserialize(item.avg_red, in);
deserialize(item.avg_green, in);
deserialize(item.avg_blue, in);
if (version == "input_rgb_image_pyramid2")
{
deserialize(item.pyramid_padding, in);
deserialize(item.pyramid_outer_padding, in);
}
else
{
item.pyramid_padding = 10;
item.pyramid_outer_padding = 11;
}
}
friend std::ostream& operator<<(std::ostream& out, const input_rgb_image_pyramid& item)
{
out << "input_rgb_image_pyramid("<<item.avg_red<<","<<item.avg_green<<","<<item.avg_blue<<")";
out << " pyramid_padding="<<item.pyramid_padding;
out << " pyramid_outer_padding="<<item.pyramid_outer_padding;
return out;
}
friend void to_xml(const input_rgb_image_pyramid& item, std::ostream& out)
{
out << "<input_rgb_image_pyramid r='"<<item.avg_red<<"' g='"<<item.avg_green
<<"' b='"<<item.avg_blue
<<"' pyramid_padding='"<<item.pyramid_padding
<<"' pyramid_outer_padding='"<<item.pyramid_outer_padding
<<"'/>";
}
private:
float avg_red;
float avg_green;
float avg_blue;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DNn_INPUT_H_