AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
82.1 kB
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include "cuda_utils.h"
#include "cuda_dlib.h"
#include "cudnn_dlibapi.h"
#include <math_constants.h>
namespace dlib
{
namespace cuda
{
// -----------------------------------------------------------------------------------
void set_device (
int dev
)
{
CHECK_CUDA(cudaSetDevice(dev));
}
int get_device (
)
{
int dev = 0;
CHECK_CUDA(cudaGetDevice(&dev));
return dev;
}
std::string get_device_name (
int device
)
{
cudaDeviceProp props;
CHECK_CUDA(cudaGetDeviceProperties(&props, device));
return props.name;
}
void set_current_device_blocking_sync(
)
{
CHECK_CUDA(cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync));
}
int get_num_devices (
)
{
int num_devices;
CHECK_CUDA(cudaGetDeviceCount(&num_devices));
return num_devices;
}
bool can_access_peer (int device_id, int peer_device_id)
{
int can_access;
CHECK_CUDA(cudaDeviceCanAccessPeer(&can_access, device_id, peer_device_id));
return can_access != 0;
}
bool can_access_peer (const tensor& device, const tensor& peer_device)
{
return can_access_peer(device.device_id(), peer_device.device_id());
}
void device_synchronize (int dev)
{
raii_set_device set_dev(dev);
CHECK_CUDA(cudaDeviceSynchronize());
}
void device_synchronize (const tensor& dev) { device_synchronize(dev.device_id()); }
enable_peer_access::
enable_peer_access(
int device_id,
int peer_device_id
) : call_disable(false), device_id(device_id), peer_device_id(peer_device_id)
{
raii_set_device set_dev(device_id);
auto err = cudaDeviceEnablePeerAccess(peer_device_id, 0);
if (err == cudaSuccess)
{
call_disable = true;
}
else if (err == cudaErrorPeerAccessAlreadyEnabled)
{
// call cudaGetLastError() to dispose of this error since we don't
// care.
auto err2 = cudaGetLastError();
if (err2 != cudaErrorPeerAccessAlreadyEnabled)
CHECK_CUDA(err2);
}
else
{
CHECK_CUDA(err);
}
}
enable_peer_access::
~enable_peer_access() noexcept(false)
{
if (call_disable)
{
raii_set_device set_dev(device_id);
CHECK_CUDA(cudaDeviceDisablePeerAccess(peer_device_id));
}
}
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
__global__ void _cuda_inverse_norms(float* invnorms, const float* data, size_t nr, size_t nc, const float eps)
{
// initialize invnorms before we begin.
for (auto i : grid_stride_range_y(0, nr))
for (auto j : grid_stride_range(0, 1))
invnorms[i] = eps;
__syncthreads();
for (auto i : grid_stride_range_y(0, nr))
{
auto p = data + i*nc;
float temp = 0;
for (auto j : grid_stride_range(0, nc))
temp += p[j]*p[j];
// and store the sum into invnorms[i]
warp_reduce_atomic_add(invnorms[i], temp);
}
__syncthreads();
for (auto i : grid_stride_range_y(0, nr))
for (auto j : grid_stride_range(0, 1))
invnorms[i] = 1.0/std::sqrt(invnorms[i]);
}
void inverse_norms (
resizable_tensor& invnorms,
const tensor& data,
const double eps
)
{
invnorms.set_size(data.num_samples());
launch_kernel(_cuda_inverse_norms, max_jobs(data.size()/data.num_samples(), data.num_samples()),
invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_dot_prods(float* out, const float* lhs, const float* rhs, size_t nr, size_t nc)
{
// initialize out before we begin.
for (auto i : grid_stride_range_y(0, nr))
for (auto j : grid_stride_range(0, 1))
out[i] = 0;
__syncthreads();
for (auto i : grid_stride_range_y(0, nr))
{
auto l = lhs + i*nc;
auto r = rhs + i*nc;
float temp = 0;
for (auto j : grid_stride_range(0, nc))
temp += l[j]*r[j];
// and store the sum into out[i]
warp_reduce_atomic_add(out[i], temp);
}
}
__global__ void _cuda_dot_prods_add_to(float* out, const float* lhs, const float* rhs, size_t nr, size_t nc)
{
for (auto i : grid_stride_range_y(0, nr))
{
auto l = lhs + i*nc;
auto r = rhs + i*nc;
float temp = 0;
for (auto j : grid_stride_range(0, nc))
temp += l[j]*r[j];
// and store the sum into out[i]
warp_reduce_atomic_add(out[i], temp);
}
}
void dot_prods (
resizable_tensor& out,
const tensor& lhs,
const tensor& rhs
)
{
DLIB_CASSERT(have_same_dimensions(lhs,rhs));
out.set_size(lhs.num_samples());
if (out.size() == 0)
return;
const auto nr = lhs.num_samples();
const auto nc = lhs.size()/lhs.num_samples();
launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc);
}
void dot_prods (
bool add_to,
tensor& out,
const tensor& lhs,
const tensor& rhs
)
{
DLIB_CASSERT(have_same_dimensions(lhs,rhs));
DLIB_CASSERT(out.k() == 1 && out.nr() == 1 && out.nc() == 1);
DLIB_CASSERT(out.size() == lhs.num_samples());
const auto nr = lhs.num_samples();
const auto nc = lhs.size()/lhs.num_samples();
if (add_to)
launch_kernel(_cuda_dot_prods_add_to, max_jobs(nc,nr), out.device(), lhs.device(), rhs.device(), nr, nc);
else
launch_kernel(_cuda_dot_prods, max_jobs(nc,nr), out.device_write_only(), lhs.device(), rhs.device(), nr, nc);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_scale_columns(float* out, const float* m, const float* v, size_t nr, size_t nc)
{
for (auto j : grid_stride_range(0, nr*nc))
{
out[j] = m[j]*v[j%nc];
}
}
void scale_columns (
tensor& out,
const tensor& m,
const tensor& v
)
{
launch_kernel(_cuda_scale_columns, max_jobs(m.size()), out.device(), m.device(), v.device(), m.num_samples(), m.size()/m.num_samples());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_scale_rows(float* out, const float* m, const float* v, size_t nr, size_t nc)
{
for (auto j : grid_stride_range(0, nr*nc))
{
out[j] = m[j]*v[j/nc];
}
}
void scale_rows (
tensor& out,
const tensor& m,
const tensor& v
)
{
launch_kernel(_cuda_scale_rows, max_jobs(m.size()), out.device(), m.device(), v.device(), m.num_samples(), m.size()/m.num_samples());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_scale_rows2(float* out, const float* m1, const float* m2, const float* v1, const float* v2, size_t nr, size_t nc)
{
for (auto j : grid_stride_range(0, nr*nc))
{
out[j] = (m1[j] - m2[j]*v1[j/nc]) * v2[j/nc];
}
}
__global__ void _cuda_scale_rows2_beta(const float beta, float* out, const float* m1, const float* m2, const float* v1, const float* v2, size_t nr, size_t nc)
{
for (auto j : grid_stride_range(0, nr*nc))
{
out[j] = beta*out[j] + (m1[j] - m2[j]*v1[j/nc]) * v2[j/nc];
}
}
void scale_rows2 (
float beta,
tensor& out,
const tensor& m1,
const tensor& m2,
const tensor& v1,
const tensor& v2
)
{
if (beta == 0)
{
launch_kernel(_cuda_scale_rows2, max_jobs(m1.size()), out.device(),
m1.device(), m2.device(), v1.device(), v2.device(), m1.num_samples(),
m1.size()/m1.num_samples());
}
else
{
launch_kernel(_cuda_scale_rows2_beta, max_jobs(m1.size()), beta,
out.device(), m1.device(), m2.device(), v1.device(), v2.device(),
m1.num_samples(), m1.size()/m1.num_samples());
}
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_exp(float* dest, const float* src, size_t n)
{
for (auto i : grid_stride_range(0, n))
dest[i] = ::exp(src[i]);
}
void exp (
tensor& dest,
const tensor& src
)
{
DLIB_ASSERT(dest.size() == src.size());
launch_kernel(_cuda_exp, max_jobs(src.size()), dest.device(), src.device(), src.size());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_log(float* dest, const float* src, size_t n)
{
for (auto i : grid_stride_range(0, n))
dest[i] = ::log(src[i]);
}
void log (
tensor& dest,
const tensor& src
)
{
DLIB_ASSERT(dest.size() == src.size());
launch_kernel(_cuda_log, max_jobs(src.size()), dest.device(), src.device(), src.size());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_log10(float* dest, const float* src, size_t n)
{
for (auto i : grid_stride_range(0, n))
dest[i] = ::log10(src[i]);
}
void log10 (
tensor& dest,
const tensor& src
)
{
DLIB_ASSERT(dest.size() == src.size());
launch_kernel(_cuda_log10, max_jobs(src.size()), dest.device(), src.device(), src.size());
}
// -----------------------------------------------------------------------------------
__global__ void _cuda_multiply1(float* d, const float* s1, const float* s2, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = s1[i]*s2[i];
}
}
__global__ void _cuda_multiply2(float* d, const float* s1, const float* s2,
size_t n, size_t s1_n, size_t s2_n, size_t max_size)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = 0;
for (size_t j = i; j < max_size; j += n)
d[i] += s1[j%s1_n]*s2[j%s2_n];
}
}
__global__ void _cuda_multiply3(float* d, const float* s1, const float* s2,
size_t n, size_t s1_n, size_t s2_n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = s1[i%s1_n]*s2[i%s2_n];
}
}
__global__ void _cuda_multiply1_add_to(float* d, const float* s1, const float* s2, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] += s1[i]*s2[i];
}
}
__global__ void _cuda_multiply2_add_to(float* d, const float* s1, const float* s2,
size_t n, size_t s1_n, size_t s2_n, size_t max_size)
{
for (auto i : grid_stride_range(0, n))
{
for (size_t j = i; j < max_size; j += n)
d[i] += s1[j%s1_n]*s2[j%s2_n];
}
}
__global__ void _cuda_multiply3_add_to(float* d, const float* s1, const float* s2,
size_t n, size_t s1_n, size_t s2_n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] += s1[i%s1_n]*s2[i%s2_n];
}
}
void multiply (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
)
{
DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
dest.nc() == src1.nc() && src1.nc() == src2.nc() );
const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
(src1.num_samples()==1 || src1.num_samples()==MD) &&
(src2.num_samples()==1 || src2.num_samples()==MD) );
if (dest.size() == 0)
return;
const size_t max_size = std::max(std::max(dest.size(),src1.size()),src2.size());
const auto d = dest.host();
const auto s1 = src1.host();
const auto s2 = src2.host();
if (dest.size() == src1.size() && src1.size() == src2.size())
{
if (add_to)
launch_kernel(_cuda_multiply1_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), src1.size());
else
launch_kernel(_cuda_multiply1,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), src1.size());
}
else if (dest.num_samples() == 1)
{
if (add_to)
launch_kernel(_cuda_multiply2_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(),
dest.size(), src1.size(), src2.size(), max_size);
else
launch_kernel(_cuda_multiply2,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(),
dest.size(), src1.size(), src2.size(), max_size);
}
else
{
if (add_to)
launch_kernel(_cuda_multiply3_add_to,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(),
dest.size(), src1.size(), src2.size());
else
launch_kernel(_cuda_multiply3,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(),
dest.size(), src1.size(), src2.size());
}
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_multiply_conv(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks)
{
for (auto i : grid_stride_range(0, n))
{
auto k = (i/bs)%ks;
d[i] = s1[i]*s2[k];
}
}
__global__ void _cuda_multiply_conv2(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks)
{
// zero initialize d before we begin.
for (auto i : grid_stride_range_y(0, ks))
for (auto j : grid_stride_range(0, 1))
d[i] = 0;
__syncthreads();
// loop over all the image planes
for (auto i : grid_stride_range_y(0, n))
{
// sum all the elements in the i-th image plane
float temp = 0;
for (auto j : grid_stride_range(i*bs, (i+1)*bs))
temp += s1[j]*s2[j];
auto k = i%ks;
// and store the sum into d[k]
warp_reduce_atomic_add(d[k], temp);
}
}
__global__ void _cuda_multiply_conv_add_to(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks)
{
for (auto i : grid_stride_range(0, n))
{
auto k = (i/bs)%ks;
d[i] += s1[i]*s2[k];
}
}
__global__ void _cuda_multiply_conv2_add_to(float* d, const float* s1, size_t n, const float* s2, size_t bs, size_t ks)
{
// loop over all the image planes
for (auto i : grid_stride_range_y(0, n))
{
// sum all the elements in the i-th image plane
float temp = 0;
for (auto j : grid_stride_range(i*bs, (i+1)*bs))
temp += s1[j]*s2[j];
auto k = i%ks;
// and store the sum into d[k]
warp_reduce_atomic_add(d[k], temp);
}
}
void multiply_conv (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
)
{
if (have_same_dimensions(dest,src1))
{
DLIB_CASSERT(src2.num_samples() == 1 && src2.nr() == 1 && src2.nc() == 1 && src2.k() == src1.k());
if (dest.size() == 0)
return;
if (add_to)
launch_kernel(_cuda_multiply_conv_add_to,max_jobs(dest.size()),
dest.device(), src1.device(), src1.size(), src2.device(), src1.nr()*src1.nc(), src1.k());
else
launch_kernel(_cuda_multiply_conv,max_jobs(dest.size()),
dest.device(), src1.device(), src1.size(), src2.device(), src1.nr()*src1.nc(), src1.k());
}
else
{
DLIB_CASSERT(have_same_dimensions(src1,src2));
DLIB_CASSERT(dest.num_samples() == 1 && dest.nr() == 1 && dest.nc() == 1 && dest.k() == src1.k());
if (dest.size() == 0)
return;
const auto bs = src1.nr()*src1.nc();
const auto n = src1.num_samples()*src1.k();
if (add_to)
launch_kernel(_cuda_multiply_conv2_add_to, max_jobs(bs,n),
dest.device(), src1.device(), n, src2.device(), bs, src1.k());
else
launch_kernel(_cuda_multiply_conv2, max_jobs(bs,n),
dest.device(), src1.device(), n, src2.device(), bs, src1.k());
}
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_scale_channels_add_to(float* d, const float* src, size_t n, const float* scales, size_t bs)
{
for (auto i : grid_stride_range(0, n))
{
auto k = i/bs;
d[i] += src[i]*scales[k];
}
}
__global__ void _cuda_scale_channels(float* d, const float* src, size_t n, const float* scales, size_t bs)
{
for (auto i : grid_stride_range(0, n))
{
auto k = i/bs;
d[i] = src[i]*scales[k];
}
}
void scale_channels (
bool add_to,
tensor& dest,
const tensor& src,
const tensor& scales
)
{
DLIB_CASSERT(have_same_dimensions(dest,src) &&
scales.num_samples() == src.num_samples() &&
scales.k() == src.k() &&
scales.nr() == 1 &&
scales.nc() == 1 );
if (dest.size() == 0)
return;
if (add_to)
launch_kernel(_cuda_scale_channels_add_to,max_jobs(dest.size()),
dest.device(), src.device(), src.size(), scales.device(), src.nr()*src.nc());
else
launch_kernel(_cuda_scale_channels,max_jobs(dest.size()),
dest.device_write_only(), src.device(), src.size(), scales.device(), src.nr()*src.nc());
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_mult1(float* d, const float* s1, const float* s2, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = s1[i]*s2[i];
}
}
__global__ void _cuda_mult1_add_to(float* d, const float* s1, const float* s2, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] += s1[i]*s2[i];
}
}
__global__ void _cuda_mult2(float* d, const float* s1, const float* s2,
size_t dn, size_t dk, size_t dr, size_t dc,
size_t s1n, size_t s1k, size_t s1r, size_t s1c,
size_t s2n, size_t s2k, size_t s2r, size_t s2c)
{
for (auto i : grid_stride_range(0, dn*dk*dr*dc))
{
size_t n,k,r,c;
unpack_idx(i, dk,dr,dc, n,k,r,c);
float v1 = 0;
float v2 = 0;
if (n < s1n &&
k < s1k &&
r < s1r &&
c < s1c )
{
v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)];
}
if (n < s2n &&
k < s2k &&
r < s2r &&
c < s2c )
{
v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)];
}
d[i] = v1*v2;
}
}
__global__ void _cuda_mult2_add_to(float* d, const float* s1, const float* s2,
size_t dn, size_t dk, size_t dr, size_t dc,
size_t s1n, size_t s1k, size_t s1r, size_t s1c,
size_t s2n, size_t s2k, size_t s2r, size_t s2c)
{
for (auto i : grid_stride_range(0, dn*dk*dr*dc))
{
size_t n,k,r,c;
unpack_idx(i, dk,dr,dc, n,k,r,c);
float v1 = 0;
float v2 = 0;
if (n < s1n &&
k < s1k &&
r < s1r &&
c < s1c )
{
v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)];
}
if (n < s2n &&
k < s2k &&
r < s2r &&
c < s2c )
{
v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)];
}
d[i] += v1*v2;
}
}
void multiply_zero_padded (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
)
{
if (dest.size() == 0)
return;
// Do the simple and fast version if everything has the same dimensions
if (have_same_dimensions(dest, src1) &&
have_same_dimensions(dest, src2))
{
if (add_to)
launch_kernel(_cuda_mult1_add_to,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size());
else
launch_kernel(_cuda_mult1,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size());
}
else
{
if (add_to)
{
// Otherwise, do the more complex version with bounds checking.
launch_kernel(_cuda_mult2_add_to,max_jobs(dest.size()),
dest.device(), src1.device(), src2.device(),
dest.num_samples(), dest.k(), dest.nr(), dest.nc(),
src1.num_samples(), src1.k(), src1.nr(), src1.nc(),
src2.num_samples(), src2.k(), src2.nr(), src2.nc()
);
}
else
{
// Otherwise, do the more complex version with bounds checking.
launch_kernel(_cuda_mult2,max_jobs(dest.size()),
dest.device(), src1.device(), src2.device(),
dest.num_samples(), dest.k(), dest.nr(), dest.nc(),
src1.num_samples(), src1.k(), src1.nr(), src1.nc(),
src2.num_samples(), src2.k(), src2.nr(), src2.nc()
);
}
}
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_add1(float* d, const float* s1, const float* s2, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = s1[i]+s2[i];
}
}
__global__ void _cuda_add2(float* d, const float* s1, const float* s2,
size_t dn, size_t dk, size_t dr, size_t dc,
size_t s1n, size_t s1k, size_t s1r, size_t s1c,
size_t s2n, size_t s2k, size_t s2r, size_t s2c)
{
for (auto i : grid_stride_range(0, dn*dk*dr*dc))
{
size_t n,k,r,c;
unpack_idx(i, dk,dr,dc, n,k,r,c);
float v1 = 0;
float v2 = 0;
if (n < s1n &&
k < s1k &&
r < s1r &&
c < s1c )
{
v1 = s1[pack_idx(s1k,s1r,s1c, n,k,r,c)];
}
if (n < s2n &&
k < s2k &&
r < s2r &&
c < s2c )
{
v2 = s2[pack_idx(s2k,s2r,s2c, n,k,r,c)];
}
d[i] = v1+v2;
}
}
void add (
tensor& dest,
const tensor& src1,
const tensor& src2
)
{
if (dest.size() == 0)
return;
// Do the simple and fast version if everything has the same dimensions
if (have_same_dimensions(dest, src1) &&
have_same_dimensions(dest, src2))
{
launch_kernel(_cuda_add1,max_jobs(dest.size()), dest.device(), src1.device(), src2.device(), dest.size());
}
else
{
// Otherwise, do the more complex version with bounds checking.
launch_kernel(_cuda_add2,max_jobs(dest.size()),
dest.device(), src1.device(), src2.device(),
dest.num_samples(), dest.k(), dest.nr(), dest.nc(),
src1.num_samples(), src1.k(), src1.nr(), src1.nc(),
src2.num_samples(), src2.k(), src2.nr(), src2.nc()
);
}
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform1(float* d, const float* s, size_t n, float A, float B)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s[i] + B;
}
}
__global__ void _cuda_affine_transform1_0(float* d, const float* s, size_t n, float A)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s[i];
}
}
void affine_transform(
tensor& dest,
const tensor& src,
const float A,
const float B
)
{
DLIB_CASSERT(dest.size()==src.size());
if (B != 0)
launch_kernel(_cuda_affine_transform1,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A, B);
else
launch_kernel(_cuda_affine_transform1_0,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A);
}
void affine_transform(
tensor& dest,
const tensor& src,
const float A
)
{
DLIB_CASSERT(dest.size()==src.size());
launch_kernel(_cuda_affine_transform1_0,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform_rect(
float* d,
const float* s1,
const float* s2,
const float* s3,
float A,
float B,
float C,
size_t start_idx,
size_t n,
size_t rect_nc,
size_t total_nc
)
{
for (auto i : grid_stride_range(0, n))
{
size_t r = i/rect_nc;
size_t c = i%rect_nc;
size_t idx = r*total_nc + c + start_idx;
d[idx] = A*s1[idx] + B*s2[idx] + C*s3[idx];
}
}
void affine_transform(
const rectangle& rect,
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
float A,
float B,
float C
)
{
DLIB_CASSERT(dest.size() == src1.size());
DLIB_CASSERT(dest.size() == src2.size());
DLIB_CASSERT(dest.size() == src3.size());
DLIB_CASSERT(dest.num_samples() == src1.num_samples());
DLIB_CASSERT(dest.num_samples() == src2.num_samples());
DLIB_CASSERT(dest.num_samples() == src3.num_samples());
DLIB_CASSERT(rectangle(0,0, dest.size()/dest.num_samples()-1, dest.num_samples()-1).contains(rect));
launch_kernel(_cuda_affine_transform_rect,max_jobs(rect.area()),
dest.device(), src1.device(), src2.device(), src3.device(), A, B, C,
rect.left() + rect.top()*(dest.size()/dest.num_samples()),
rect.area(),
rect.width(),
dest.size()/dest.num_samples());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform4(float* d, const float* s1, const float* s2, size_t n, float A, float B, float C)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s1[i] + B*s2[i] + C;
}
}
__global__ void _cuda_affine_transform4_0(float* d, const float* s1, const float* s2, size_t n, float A, float B)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s1[i] + B*s2[i];
}
}
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const float A,
const float B,
const float C
)
{
DLIB_CASSERT(dest.size()==src1.size());
DLIB_CASSERT(dest.size()==src2.size());
if (C != 0)
launch_kernel(_cuda_affine_transform4,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B, C);
else
launch_kernel(_cuda_affine_transform4_0,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B);
}
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const float A,
const float B
)
{
DLIB_CASSERT(dest.size()==src1.size());
DLIB_CASSERT(dest.size()==src2.size());
launch_kernel(_cuda_affine_transform4_0,max_jobs(dest.size()),dest.device(), src1.device(), src2.device(), dest.size(), A, B);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_add_scaled(float* d, const float* s, size_t n, float scale)
{
for (auto i : grid_stride_range(0, n))
{
d[i] += scale*s[i];
}
}
void add_scaled(
tensor& dest,
const float scale,
const tensor& src
)
{
DLIB_CASSERT(dest.size()==src.size());
launch_kernel(_cuda_add_scaled,max_jobs(dest.size()),dest.device(), src.device(), dest.size(), scale);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_add_cv_to_all_columns(float beta, float* dest, float alpha, const float* src, size_t size, size_t stride)
{
for (auto i : grid_stride_range(0, size))
{
dest[i] = beta*dest[i] + alpha*src[i/stride];
}
}
__global__ void _cuda_add_cv_to_all_columns_no_beta(float* dest, float alpha, const float* src, size_t size, size_t stride)
{
for (auto i : grid_stride_range(0, size))
{
dest[i] = alpha*src[i/stride];
}
}
void add_cv_to_all_columns(
float beta,
tensor& dest,
float alpha,
const tensor& src
)
{
DLIB_CASSERT(dest.num_samples() == src.num_samples() && src.num_samples() == src.size());
if (beta == 0)
launch_kernel(_cuda_add_cv_to_all_columns_no_beta, max_jobs(dest.size()), dest.device(), alpha, src.device(), dest.size(), dest.size()/dest.num_samples());
else
launch_kernel(_cuda_add_cv_to_all_columns, max_jobs(dest.size()), beta, dest.device(), alpha, src.device(), dest.size(), dest.size()/dest.num_samples());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform5(
float* d, const float* s1, const float* s2, const float* s3, size_t n, float A, float B, float C, float D
)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D;
}
}
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
const float A,
const float B,
const float C,
const float D
)
{
DLIB_CASSERT(dest.size()==src1.size());
DLIB_CASSERT(dest.size()==src2.size());
DLIB_CASSERT(dest.size()==src3.size());
launch_kernel(_cuda_affine_transform5,max_jobs(dest.size()),dest.device(), src1.device(),
src2.device(), src3.device(), dest.size(), A, B, C, D);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_affine_transform_range(
float* d, const float* s1, const float* s2, const float* s3, size_t begin, size_t end, float A, float B, float C
)
{
for (auto i : grid_stride_range(begin, end))
{
d[i] = A*s1[i] + B*s2[i] + C*s3[i];
}
}
void affine_transform_range(
size_t begin,
size_t end,
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
const float A,
const float B,
const float C
)
{
DLIB_CASSERT(dest.size()==src1.size());
DLIB_CASSERT(dest.size()==src2.size());
DLIB_CASSERT(dest.size()==src3.size());
DLIB_CASSERT(begin <= end && end <= dest.size());
launch_kernel(_cuda_affine_transform_range,max_jobs(end-begin),
dest.device(), src1.device(),
src2.device(), src3.device(), begin, end, A, B, C);
}
// -----------------------------------------------------------------------------------
__global__ void _cuda_affine_transform2(float* d, const float* s, size_t n, const float* A, const float* B)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A[i]*s[i] + B[i];
}
}
__global__ void _cuda_affine_transform3(float* d, const float* s, size_t n, const float* A, const float* B, size_t bs)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = A[i%bs]*s[i] + B[i%bs];
}
}
void affine_transform(
tensor& dest,
const tensor& src,
const tensor& A,
const tensor& B
)
{
DLIB_CASSERT(have_same_dimensions(dest, src));
DLIB_CASSERT(
((A.num_samples()==1 && B.num_samples()==1) ||
(A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples())));
DLIB_CASSERT(
A.nr()==B.nr() && B.nr()==src.nr() &&
A.nc()==B.nc() && B.nc()==src.nc() &&
A.k() ==B.k() && B.k()==src.k(),
"\nA.nr(): " << A.nr() << "\nB.nr(): " << B.nr() << "\nsrc.nr(): " << src.nr()
<<"\nA.nc(): " << A.nc() << "\nB.nc(): " << B.nc() << "\nsrc.nc(): " << src.nc()
<<"\nA.k(): " << A.k() << "\nB.k(): " << B.k() << "\nsrc.k(): " << src.k()
);
if (A.num_samples() == 1)
{
launch_kernel(_cuda_affine_transform3,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A.device(), B.device(), A.size());
}
else
{
launch_kernel(_cuda_affine_transform2,max_jobs(dest.size()),dest.device(), src.device(), src.size(), A.device(), B.device());
}
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_compute_adam_update(
size_t begin,
size_t end,
float* s,
float* m,
float* v,
const float alpha,
const float weight_decay,
const float momentum1,
const float momentum2,
const float* params,
const float* params_grad
)
{
const float eps = 1e-8;
// The loop is equivalent to doing this:
// m = momentum1*m + (1-momentum1) * (weight_decay*params + params_grad);
// v = momentum2*v + (1-momentum2)*squared(weight_decay*params + params_grad);
// s = -alpha*m/(sqrt(v) + eps);
for (auto i : grid_stride_range(begin, end))
{
float g = (weight_decay*params[i] + params_grad[i]);
m[i] = momentum1*m[i] + (1-momentum1)*g;
v[i] = momentum2*v[i] + (1-momentum2)*g*g;
s[i] = -alpha*m[i]/(std::sqrt(v[i]) + eps);
}
}
void compute_adam_update (
size_t begin,
size_t end,
tensor& s,
tensor& m,
tensor& v,
const float t,
const float learning_rate,
const float weight_decay,
const float momentum1,
const float momentum2,
const tensor& params,
const tensor& params_grad
)
{
DLIB_CASSERT(s.size() == m.size() &&
s.size() == v.size() &&
s.size() == params.size() &&
s.size() == params_grad.size());
DLIB_CASSERT(begin <= end && end <= params.size());
const float alpha = learning_rate*std::sqrt(1-std::pow(momentum2,t))/(1-std::pow(momentum1, t));
launch_kernel(_cuda_compute_adam_update,max_jobs(end-begin),
begin, end, s.device(), m.device(), v.device(), alpha, weight_decay,
momentum1, momentum2, params.device(), params_grad.device());
}
// -----------------------------------------------------------------------------------
__global__ void _cuda_affine_transform_conv(float* d, const float* s, size_t n, const float* A, const float* B, size_t bs, size_t ks)
{
for (auto i : grid_stride_range(0, n))
{
auto k = (i/bs)%ks;
d[i] = A[k]*s[i] + B[k];
}
}
void affine_transform_conv(
tensor& dest,
const tensor& src,
const tensor& A,
const tensor& B
)
{
DLIB_CASSERT(have_same_dimensions(dest, src));
DLIB_CASSERT(have_same_dimensions(A, B));
DLIB_CASSERT(A.num_samples() == 1 && A.nr() == 1 && A.nc() == 1 && A.k() == src.k());
launch_kernel(_cuda_affine_transform_conv,max_jobs(dest.size()),
dest.device(), src.device(), src.size(), A.device(), B.device(), src.nr()*src.nc(), src.k());
}
// -----------------------------------------------------------------------------------
__global__ void _add_bias_gradient(float* out, const float* in, size_t n, size_t total_n)
{
for (auto i : grid_stride_range(0, n))
{
out[i] = in[i];
for (size_t j = i+n; j < total_n; j+=n)
out[i] += in[j];
}
}
void assign_bias_gradient (
tensor& grad,
const tensor& gradient_input
)
{
DLIB_CASSERT(
grad.num_samples() == 1 &&
gradient_input.k() == grad.k() &&
gradient_input.nr() == grad.nr() &&
gradient_input.nc() == grad.nc() &&
gradient_input.size() > 0);
launch_kernel(_add_bias_gradient,max_jobs(grad.size()),grad.device(), gradient_input.device(), grad.size(), gradient_input.size());
}
// ----------------------------------------------------------------------------------------
__global__ void _set_tensor(float* out, size_t n, const float val)
{
for (auto i : grid_stride_range(0, n))
out[i] = val;
}
void set_tensor (
tensor& t,
float value
)
{
launch_kernel(_set_tensor, max_jobs(t.size()), t.device(), t.size(), value);
}
// ----------------------------------------------------------------------------------------
__global__ void _scale_tensor(float* out, size_t n, const float val)
{
for (auto i : grid_stride_range(0, n))
out[i] *= val;
}
void scale_tensor (
tensor& t,
float value
)
{
launch_kernel(_scale_tensor, max_jobs(t.size()), t.device(), t.size(), value);
}
// -----------------------------------------------------------------------------------
// -----------------------------------------------------------------------------------
__global__ void _cuda_threshold(float* d, size_t n, float thresh)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = d[i]>thresh ? 1:0;
}
}
void threshold (
tensor& data,
float thresh
)
{
launch_kernel(_cuda_threshold,max_jobs(data.size()),data.device(), data.size(), thresh);
}
// ------------------------------------------------------------------------------------
__global__ void _cuda_dot(const float* a, const float* b, size_t n, float* result)
{
// Parallel sum everything into local temp variables.
float temp = 0;
for(auto i : grid_stride_range(0, n))
temp += a[i]*b[i];
// Then do the warp reduce add thing to merge into one output value.
warp_reduce_atomic_add(*result, temp);
}
void dot (
const tensor& a,
const tensor& b,
tensor& result,
size_t idx
)
{
DLIB_CASSERT(a.size() == b.size());
DLIB_CASSERT(idx < result.size());
launch_kernel(_cuda_dot, max_jobs(a.size()), a.device(), b.device(), a.size(), result.device()+idx);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_prelu(const float* s, float* d, size_t n, const float* pp)
{
const float p = *pp;
for (auto i : grid_stride_range(0, n))
{
if (s[i] > 0)
d[i] = s[i];
else
d[i] = p*s[i];
}
}
void prelu (
tensor& dest,
const tensor& src,
const tensor& param
)
{
launch_kernel(_cuda_prelu, max_jobs(dest.size()),
src.device(), dest.device(), src.size(), param.device());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_prelu_gradient(float* out, const float* s, const float* gi, size_t n, const float* pp, float* ppgrad)
{
const float p = *pp;
float pgrad = 0;
for(auto i : grid_stride_range(0, n))
{
if (s[i] > 0)
{
out[i] += gi[i];
}
else
{
out[i] += p*gi[i];
pgrad += gi[i]*s[i];
}
}
// Then do the warp reduce add thing to merge into one output value.
warp_reduce_atomic_add(*ppgrad, pgrad);
}
void prelu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input,
const tensor& param,
tensor& params_grad
)
{
params_grad = 0;
launch_kernel(_cuda_prelu_gradient, max_jobs(grad.size()),
grad.device(), src.device(), gradient_input.device(), grad.size(),
param.device(), params_grad.device());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_leaky_relu(const float* s, float* d, size_t n, const float alpha)
{
for (auto i : grid_stride_range(0, n))
{
if (s[i] > 0)
d[i] = s[i];
else
d[i] = alpha * s[i];
}
}
void leaky_relu(
tensor& dest,
const tensor &src,
const float alpha
)
{
launch_kernel(_cuda_leaky_relu, max_jobs(dest.size()),
src.device(), dest.device(), src.size(), alpha);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_leaky_relu_gradient_inplace(float* out, const float* s, const float* gi, size_t n, const float alpha)
{
for (auto i : grid_stride_range(0, n))
{
if (s[i] > 0)
out[i] = gi[i];
else
out[i] = alpha * gi[i];
}
}
__global__ void _cuda_leaky_relu_gradient(float* out, const float* s, const float* gi, size_t n, const float alpha)
{
for (auto i : grid_stride_range(0, n))
{
if (s[i] > 0)
out[i] += gi[i];
else
out[i] += alpha * gi[i];
}
}
void leaky_relu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input,
const float alpha
)
{
float* out = grad.device();
const float* gi = gradient_input.device();
if (out == gi)
{
launch_kernel(_cuda_leaky_relu_gradient_inplace, max_jobs(grad.size()),
out, src.device(), gi, grad.size(), alpha);
}
else
{
launch_kernel(_cuda_leaky_relu_gradient, max_jobs(grad.size()),
out, src.device(), gi, grad.size(), alpha);
}
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_mish(const float* s, float* d, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
const auto e = std::exp(s[i]);
const auto delta = 2*e + e*e + 2;
d[i] = s[i] - 2*s[i]/delta;
}
}
void mish (
tensor& dest,
const tensor& src
)
{
launch_kernel(_cuda_mish, max_jobs(dest.size()), src.device(), dest.device(), src.size());
}
// ----------------------------------------------------------------------------------------
__device__ float mish_compute_gradient(float x)
{
if (x >= 8)
return 1.f;
if (x <= -8)
return 0.f;
const auto e = std::exp(x);
const auto delta = 2*e + e*e + 2;
const auto omega = 4*(x + 1) + 4*e*e + e*e*e + e*(4*x + 6);
return e*omega/(delta*delta);
}
__global__ void _cuda_mish_gradient_inplace(float* out, const float* s, const float* gi, size_t n)
{
for (auto i : grid_stride_range(0, n))
out[i] = gi[i]*mish_compute_gradient(s[i]);
}
__global__ void _cuda_mish_gradient(float* out, const float* s, const float* gi, size_t n)
{
for (auto i : grid_stride_range(0, n))
out[i] += gi[i]*mish_compute_gradient(s[i]);
}
void mish_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input
)
{
float* out = grad.device();
const float* gi = gradient_input.device();
if (out == gi)
launch_kernel(_cuda_mish_gradient_inplace, max_jobs(grad.size()), out, src.device(), gi, grad.size());
else
launch_kernel(_cuda_mish_gradient, max_jobs(grad.size()), out, src.device(), gi, grad.size());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_gelu(const float* s, float* d, size_t n)
{
for (auto i : grid_stride_range(0, n))
{
d[i] = s[i] * normcdf(s[i]);
}
}
void gelu (
tensor& dest,
const tensor& src
)
{
launch_kernel(_cuda_gelu, max_jobs(dest.size()), src.device(), dest.device(), src.size());
}
// ----------------------------------------------------------------------------------------
__device__ float gelu_compute_gradient(float x)
{
const float beta = 1.0f / CUDART_SQRT_2PI;
const float cdf = normcdf(x);
const float pdf = beta*std::exp(-0.5f*x*x);
return cdf + x * pdf;
}
__global__ void _cuda_gelu_gradient_inplace(float* out, const float* s, const float* gi, size_t n)
{
for (auto i : grid_stride_range(0, n))
out[i] = gi[i]*gelu_compute_gradient(s[i]);
}
__global__ void _cuda_gelu_gradient(float* out, const float* s, const float* gi, size_t n)
{
for (auto i : grid_stride_range(0, n))
out[i] += gi[i]*gelu_compute_gradient(s[i]);
}
void gelu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input
)
{
float* out = grad.device();
const float* gi = gradient_input.device();
if (out == gi)
launch_kernel(_cuda_gelu_gradient_inplace, max_jobs(grad.size()), out, src.device(), gi, grad.size());
else
launch_kernel(_cuda_gelu_gradient, max_jobs(grad.size()), out, src.device(), gi, grad.size());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_resize_bilinear(size_t dsize, size_t dchan_size, size_t dnc, float* d,
size_t schan_size, int snr, int snc, const float* s,
const float x_scale, const float y_scale)
{
for(auto i : grid_stride_range(0, dsize))
{
const int idx = i%dchan_size;
const int channel = i/dchan_size;
const int sidx = channel*schan_size;
const int r = idx/dnc;
const int c = idx%dnc;
const float y = r*y_scale;
const int top = static_cast<int>(::floorf(y));
const int bottom = ::min(top+1, snr-1);
const float tb_frac = y - top;
const float x = c*x_scale;
const int left = static_cast<int>(::floorf(x));
const int right = ::min(left+1, snc-1);
const float lr_frac = x - left;
float tl = s[sidx+top*snc+left];
float tr = s[sidx+top*snc+right];
float bl = s[sidx+bottom*snc+left];
float br = s[sidx+bottom*snc+right];
float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) +
tb_frac*((1-lr_frac)*bl + lr_frac*br);
d[i] = temp;
}
}
__global__ void _cuda_resize_bilinear_strided(size_t dsize, size_t dchan_size, size_t dnc, float* d,
size_t schan_size, int snr, int snc, const float* s,
const float x_scale, const float y_scale,
size_t dest_row_stride, size_t src_row_stride, size_t dest_chan_size_strided
)
{
for(auto i : grid_stride_range(0, dsize))
{
const int idx = i%dchan_size;
const int channel = i/dchan_size;
const int sidx = channel*schan_size;
const int r = idx/dnc;
const int c = idx%dnc;
const int didx = channel*dest_chan_size_strided + r*dest_row_stride+c;
const float y = r*y_scale;
const int top = static_cast<int>(::floorf(y));
const int bottom = ::min(top+1, snr-1);
const float tb_frac = y - top;
const float x = c*x_scale;
const int left = static_cast<int>(::floorf(x));
const int right = ::min(left+1, snc-1);
const float lr_frac = x - left;
float tl = s[sidx+top*src_row_stride+left];
float tr = s[sidx+top*src_row_stride+right];
float bl = s[sidx+bottom*src_row_stride+left];
float br = s[sidx+bottom*src_row_stride+right];
float temp = (1-tb_frac)*((1-lr_frac)*tl + lr_frac*tr) +
tb_frac*((1-lr_frac)*bl + lr_frac*br);
d[didx] = temp;
}
}
void resize_bilinear (
tensor& dest,
long dest_row_stride,
long dest_channel_stride,
const tensor& src,
long src_row_stride,
long src_channel_stride
)
{
DLIB_CASSERT(is_same_object(dest, src)==false);
DLIB_CASSERT(dest.num_samples() == src.num_samples());
DLIB_CASSERT(dest.k() == src.k());
if (dest.size() == 0 || src.size() == 0)
return;
const float x_scale = (src.nc()-1)/(float)std::max<long>((dest.nc()-1),1);
const float y_scale = (src.nr()-1)/(float)std::max<long>((dest.nr()-1),1);
if (dest.nc() == dest_row_stride && dest.nr()*dest.nc()==dest_channel_stride &&
src.nc() == src_row_stride && src.nr()*src.nc()==src_channel_stride)
{
launch_kernel(_cuda_resize_bilinear,
dest.size(), dest.nr()*dest.nc(), dest.nc(), dest.device(),
src.nr()*src.nc(), src.nr(), src.nc(), src.device(),
x_scale, y_scale);
}
else
{
launch_kernel(_cuda_resize_bilinear_strided,
dest.size(), dest.nr()*dest.nc(), dest.nc(), dest.device(),
src_channel_stride, src.nr(), src.nc(), src.device(),
x_scale, y_scale, dest_row_stride, src_row_stride, dest_channel_stride);
}
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_resize_bilinear_gradient(size_t dsize, size_t dchan_size, size_t dnc, const float* d,
size_t schan_size, int snr, int snc, float* s,
const float x_scale, const float y_scale)
{
for(auto i : grid_stride_range(0, dsize))
{
const float tmp = d[i];
const int idx = i%dchan_size;
const int channel = i/dchan_size;
const int sidx = channel*schan_size;
const int r = idx/dnc;
const int c = idx%dnc;
const float y = r*y_scale;
const int top = static_cast<int>(::floorf(y));
const int bottom = ::min(top+1, snr-1);
const float tb_frac = y - top;
const float x = c*x_scale;
const int left = static_cast<int>(::floorf(x));
const int right = ::min(left+1, snc-1);
const float lr_frac = x - left;
atomicAdd(s+sidx+top*snc+left, tmp*(1-tb_frac)*(1-lr_frac));
atomicAdd(s+sidx+top*snc+right, tmp*(1-tb_frac)*(lr_frac));
atomicAdd(s+sidx+bottom*snc+left, tmp*(tb_frac)*(1-lr_frac));
atomicAdd(s+sidx+bottom*snc+right, tmp*(tb_frac)*(lr_frac));
}
}
__global__ void _cuda_resize_bilinear_gradient_strided(size_t dsize, size_t dchan_size, size_t dnc, const float* d,
size_t schan_size, int snr, int snc, float* s,
const float x_scale, const float y_scale,
size_t dest_row_stride, size_t src_row_stride, size_t dest_chan_size_strided
)
{
for(auto i : grid_stride_range(0, dsize))
{
const int idx = i%dchan_size;
const int channel = i/dchan_size;
const int didx = channel*dest_chan_size_strided;
const int sidx = channel*schan_size;
const int r = idx/dnc;
const int c = idx%dnc;
const float tmp = d[didx + r*dest_row_stride+c];
const float y = r*y_scale;
const int top = static_cast<int>(::floorf(y));
const int bottom = ::min(top+1, snr-1);
const float tb_frac = y - top;
const float x = c*x_scale;
const int left = static_cast<int>(::floorf(x));
const int right = ::min(left+1, snc-1);
const float lr_frac = x - left;
atomicAdd(s+sidx+top*src_row_stride+left, tmp*(1-tb_frac)*(1-lr_frac));
atomicAdd(s+sidx+top*src_row_stride+right, tmp*(1-tb_frac)*(lr_frac));
atomicAdd(s+sidx+bottom*src_row_stride+left, tmp*(tb_frac)*(1-lr_frac));
atomicAdd(s+sidx+bottom*src_row_stride+right, tmp*(tb_frac)*(lr_frac));
}
}
void resize_bilinear_gradient (
tensor& grad,
long grad_row_stride,
long grad_channel_stride,
const tensor& gradient_input,
long gradient_input_row_stride,
long gradient_input_channel_stride
)
{
DLIB_CASSERT(is_same_object(grad, gradient_input)==false);
DLIB_CASSERT(gradient_input.num_samples() == grad.num_samples());
DLIB_CASSERT(gradient_input.k() == grad.k());
if (grad.size() == 0 || gradient_input.size() == 0)
return;
const float x_scale = (grad.nc()-1)/(float)std::max<long>((gradient_input.nc()-1),1);
const float y_scale = (grad.nr()-1)/(float)std::max<long>((gradient_input.nr()-1),1);
if (grad.nc() == grad_row_stride && grad.nr()*grad.nc()==grad_channel_stride &&
gradient_input.nc() == gradient_input_row_stride && gradient_input.nr()*gradient_input.nc()==gradient_input_channel_stride)
{
launch_kernel(_cuda_resize_bilinear_gradient,
gradient_input.size(), gradient_input.nr()*gradient_input.nc(), gradient_input.nc(), gradient_input.device(),
grad.nr()*grad.nc(), grad.nr(), grad.nc(), grad.device(),
x_scale, y_scale);
}
else
{
launch_kernel(_cuda_resize_bilinear_gradient_strided,
gradient_input.size(), gradient_input.nr()*gradient_input.nc(), gradient_input.nc(), gradient_input.device(),
grad_channel_stride, grad.nr(), grad.nc(), grad.device(),
x_scale, y_scale, gradient_input_row_stride, grad_row_stride, gradient_input_channel_stride);
}
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_layer_normalize(float* out, const float* s, float* m, float* v, const float* g, const float* b, float eps, size_t ns, size_t num)
{
// compute means and sum of squares
for (auto n : grid_stride_range_y(0, ns))
{
auto p = s + n * num;
float means = 0;
float invstds = 0;
for (auto i : grid_stride_range(0, num))
{
means += p[i];
invstds += p[i] * p[i];
}
warp_reduce_atomic_add(m[n], means/num);
warp_reduce_atomic_add(v[n], invstds/num);
}
__syncthreads();
// compute variances
for (auto n : grid_stride_range_y(0, ns))
{
for (auto i : grid_stride_range(0, 1))
{
auto var = v[n] - m[n] * m[n];
v[n] = 1.0f / std::sqrt(var + eps);
}
}
__syncthreads();
for (auto n : grid_stride_range_y(0, ns))
{
for (auto i : grid_stride_range(0, num))
{
const float val = (s[n*num+i]-m[n])*v[n];
out[n*num+i] = val*g[n]+b[n];
}
}
}
__global__ void _cuda_layer_normalize_gradient(float* out, float* gg, float* bg, const float* s, const float* gi, const float* m, const float* v, const float* g, float* dm, float* dv, float eps, size_t ns, size_t num)
{
for (auto n : grid_stride_range_y(0, ns))
{
float temp_bg = 0;
float temp_gg = 0;
float temp_dv = 0;
for (auto i : grid_stride_range(0, num))
{
auto idx = n*num+i;
const float x_hat = (s[idx] - m[n])*v[n];
temp_bg += gi[idx];
temp_gg += gi[idx]*x_hat;
const float dx = gi[idx] * g[n];
temp_dv += dx*(s[idx] - m[n])*-0.5*v[n]*v[n]*v[n];
}
warp_reduce_atomic_add(bg[n], temp_bg);
warp_reduce_atomic_add(gg[n], temp_gg);
warp_reduce_atomic_add(dv[n], temp_dv);
}
__syncthreads();
for (auto n : grid_stride_range_y(0, ns))
{
float temp_dm = 0;
for (auto i : grid_stride_range(0, num))
{
auto idx = n*num+i;
const float dx = gi[idx]*g[n];
temp_dm += dx*-v[n] + dv[n] * -2*(s[idx] - m[n])/num;
}
warp_reduce_atomic_add(dm[n], temp_dm);
}
__syncthreads();
for (auto n : grid_stride_range_y(0, ns))
{
for (auto i : grid_stride_range(0, num))
{
auto idx = n*num+i;
const float dx = gi[idx]*g[n];
out[idx] += dx*v[n] + dv[n] * 2*(s[idx] - m[n])/num + dm[n]/num;
}
}
}
void layer_normalize (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const tensor& src,
const tensor& gamma,
const tensor& beta
)
{
const long num = src.k() * src.nr() * src.nc();
DLIB_CASSERT(
have_same_dimensions(gamma, beta) &&
src.num_samples() == gamma.size() &&
src.num_samples() == beta.size() &&
eps > 0,
"\ngamma.k(): " << gamma.k() <<
"\ngamma.nr(): " << gamma.nr() <<
"\ngamma.nc(): " << gamma.nc() <<
"\nbeta.k(): " << beta.k() <<
"\nbeta.nr(): " << beta.nr() <<
"\nbeta.nc(): " << beta.nc() <<
"\nsrc.k(): " << src.k() <<
"\nsrc.nr(): " << src.nr() <<
"\nsrc.nc(): " << src.nc() <<
"\neps: " << eps
);
dest.copy_size(src);
means.set_size(src.num_samples());
invstds.set_size(src.num_samples());
means = 0;
invstds = 0;
launch_kernel(_cuda_layer_normalize, max_jobs(num, src.num_samples()), dest.device(), src.device(),
means.device(), invstds.device(), gamma.device(), beta.device(), eps, src.num_samples(), num);
}
void layer_normalize_gradient (
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
)
{
const long num = src.k() * src.nr() * src.nc();
DLIB_CASSERT(src.num_samples() == means.size());
DLIB_CASSERT(src.num_samples() == invstds.size());
DLIB_CASSERT(src.num_samples() == gamma.size());
DLIB_CASSERT(src.num_samples() == gamma_grad.size());
DLIB_CASSERT(src.num_samples() == beta_grad.size());
DLIB_CASSERT(have_same_dimensions(gradient_input, src));
DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
DLIB_CASSERT(eps > 0);
beta_grad = 0;
gamma_grad = 0;
resizable_tensor dvars, dmeans;
dvars.copy_size(invstds);
dmeans.copy_size(means);
dvars = 0;
dmeans = 0;
launch_kernel(_cuda_layer_normalize_gradient, max_jobs(num, src.num_samples()),
src_grad.device(), gamma_grad.device(), beta_grad.device(), src.device(),
gradient_input.device(), means.device(), invstds.device(), gamma.device(),
dmeans.device(), dvars.device(), eps, src.num_samples(), num);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_copy_tensor_add_to (float* dest, size_t size, const float* src, size_t dest_stride, size_t src_stride, size_t block_size)
{
for(auto i : grid_stride_range(0, size))
{
size_t blk = i/block_size;
size_t j = i%block_size;
dest[blk*dest_stride + j] += src[blk*src_stride + j];
}
}
__global__ void _cuda_copy_tensor (float* dest, size_t size, const float* src, size_t dest_stride, size_t src_stride, size_t block_size)
{
for(auto i : grid_stride_range(0, size))
{
size_t blk = i/block_size;
size_t j = i%block_size;
dest[blk*dest_stride + j] = src[blk*src_stride + j];
}
}
void copy_tensor(
bool add_to,
tensor& dest,
size_t dest_k_offset,
const tensor& src,
size_t src_k_offset,
size_t count_k
)
{
const size_t dest_sample_size = static_cast<size_t>(dest.nc() * dest.nr() * dest.k());
const size_t src_sample_size = static_cast<size_t>(src.nc() * src.nr() * src.k());
const size_t block_size = count_k * dest.nc() * dest.nr();
DLIB_CASSERT(dest.num_samples() == src.num_samples() &&
dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size");
DLIB_CASSERT(dest.k() - dest_k_offset >= count_k, "Not enough space in dest tensor");
DLIB_CASSERT(src.k() - src_k_offset >= count_k, "Not enough space in src tensor");
float* dest_p = dest.device() + dest_k_offset * dest.nc() * dest.nr();
const float* src_p = src.device() + src_k_offset * src.nc() * src.nr();;
if (add_to)
{
launch_kernel(_cuda_copy_tensor_add_to, max_jobs(dest.size()),
dest_p, block_size*dest.num_samples(),
src_p, dest_sample_size, src_sample_size, block_size);
}
else
{
launch_kernel(_cuda_copy_tensor, max_jobs(dest.size()),
dest_p, block_size*dest.num_samples(),
src_p, dest_sample_size, src_sample_size, block_size);
}
}
// ----------------------------------------------------------------------------------------
__device__ float cuda_log1pexp(float x)
{
if (x <= -18)
return std::exp(x);
else if (-18 < x && x <= 9)
return std::log1pf(std::exp(x));
else if (9 < x && x <= 16)
return x + expf(-x);
else
return x;
}
__global__ void _cuda_compute_loss_binary_log_per_pixel(float* loss_out, float* g, const float* truth, const float* out_data, size_t n, const float scale)
{
float loss = 0;
for(auto i : grid_stride_range(0, n))
{
const float y = truth[i];
if (y > 0.f)
{
const float temp = cuda_log1pexp(-out_data[i]);
loss += y*temp;
g[i] = y*scale*(g[i]-1);
}
else if (y < 0.f)
{
const float temp = -(-out_data[i]-cuda_log1pexp(-out_data[i]));
loss += -y*temp;
g[i] = -y*scale*g[i];
}
else
{
g[i] = 0.f;
}
}
warp_reduce_atomic_add(*loss_out, loss);
}
// ----------------------------------------------------------------------------------------
__device__ float cuda_safe_log(float x, float epsilon = 1e-10)
{
// Prevent trying to calculate the logarithm of a very small number (let alone zero)
if (x >= epsilon)
return ::log(x);
else
return ::log(epsilon);
}
__global__ void _cuda_compute_loss_multiclass_log_per_pixel(float* loss_out, float* g, const uint16_t* truth, size_t n, size_t plane_size, size_t sample_size, size_t nk, uint16_t label_to_ignore, const float scale)
{
float loss = 0;
for(auto i : grid_stride_range(0, n))
{
const size_t k = (i/plane_size)%nk;
const size_t idx = (i%plane_size) + plane_size*(i/sample_size);
const size_t y = truth[idx];
if (k == y)
{
loss -= cuda_safe_log(g[i]);
g[i] = scale*(g[i] - 1);
}
else if (y == label_to_ignore)
{
g[i] = 0.f;
}
else
{
g[i] = scale*g[i];
}
}
warp_reduce_atomic_add(*loss_out, loss);
}
__global__ void _cuda_compute_loss_multiclass_log_per_pixel_weighted(float* loss_out, float* g, const uint16_t* truth, size_t n, size_t plane_size, size_t sample_size, size_t nk, const float* weights, const float scale)
{
float loss = 0;
for(auto i : grid_stride_range(0, n))
{
const size_t k = (i/plane_size)%nk;
const size_t idx = (i%plane_size) + plane_size*(i/sample_size);
const size_t y = truth[idx];
const float weight = weights[idx];
if (k == y)
{
loss -= weight*cuda_safe_log(g[i]);
g[i] = weight*scale*(g[i] - 1);
}
else
{
g[i] = weight*scale*g[i];
}
}
warp_reduce_atomic_add(*loss_out, loss);
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_compute_loss_mean_squared_per_channel_and_pixel(float* loss_out, float* g, const float* truth, const float* out_data, size_t n, const float scale)
{
float loss = 0;
for (auto i : grid_stride_range(0, n))
{
const float y = truth[i];
const float temp = y - out_data[i];
loss += temp * temp;
g[i] = -temp * scale;
}
warp_reduce_atomic_add(*loss_out, loss);
}
// ----------------------------------------------------------------------------------------
void compute_loss_binary_log_per_pixel::
do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const float> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
)
{
CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float)));
sigmoid(gradient, subnetwork_output);
// The loss we output is the average loss over the mini-batch, and also over each element of the matrix output.
const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc());
launch_kernel(_cuda_compute_loss_binary_log_per_pixel, max_jobs(gradient.size()),
loss_work_buffer.data(), gradient.device(), truth_buffer.data(), subnetwork_output.device(), gradient.size(), scale);
float floss;
dlib::cuda::memcpy(&floss, loss_work_buffer);
loss = scale*floss;
}
void compute_loss_multiclass_log_per_pixel::
do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const uint16_t> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
)
{
CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float)));
softmax(gradient, subnetwork_output);
static const uint16_t label_to_ignore = std::numeric_limits<uint16_t>::max();
// The loss we output is the average loss over the mini-batch, and also over each element of the matrix output.
const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc());
launch_kernel(_cuda_compute_loss_multiclass_log_per_pixel, max_jobs(gradient.size()),
loss_work_buffer.data(), gradient.device(), truth_buffer.data(), gradient.size(), gradient.nr()*gradient.nc(), gradient.nr()*gradient.nc()*gradient.k(), gradient.k(), label_to_ignore, scale);
float floss;
dlib::cuda::memcpy(&floss, loss_work_buffer);
loss = scale*floss;
}
void compute_loss_multiclass_log_per_pixel_weighted::
do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const uint16_t> truth_buffer,
cuda_data_ptr<const float> weights_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
)
{
CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float)));
softmax(gradient, subnetwork_output);
// The loss we output is the average loss over the mini-batch, and also over each element of the matrix output.
const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.nr() * subnetwork_output.nc());
launch_kernel(_cuda_compute_loss_multiclass_log_per_pixel_weighted, max_jobs(gradient.size()),
loss_work_buffer.data(), gradient.device(), truth_buffer.data(), gradient.size(), gradient.nr()*gradient.nc(), gradient.nr()*gradient.nc()*gradient.k(), gradient.k(), weights_buffer.data(), scale);
float floss;
dlib::cuda::memcpy(&floss, loss_work_buffer);
loss = scale*floss;
}
void compute_loss_mean_squared_per_channel_and_pixel::
do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const float> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
)
{
CHECK_CUDA(cudaMemset(loss_work_buffer, 0, sizeof(float)));
// The loss we output is the average loss over the mini-batch, and also over each element of the matrix output.
const double scale = 1.0 / (subnetwork_output.num_samples() * subnetwork_output.k() * subnetwork_output.nr() * subnetwork_output.nc());
launch_kernel(_cuda_compute_loss_mean_squared_per_channel_and_pixel , max_jobs(gradient.size()),
loss_work_buffer.data(), gradient.device(), truth_buffer.data(), subnetwork_output.device(), gradient.size(), scale);
float floss;
dlib::cuda::memcpy(&floss, loss_work_buffer);
loss = scale*floss;
}
// ----------------------------------------------------------------------------------------
}
}