Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio App for Bird Species Classification
|
| 3 |
+
Deployed on Hugging Face Spaces
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torchvision import transforms
|
| 10 |
+
from torchvision.models import convnext_base
|
| 11 |
+
from PIL import Image
|
| 12 |
+
import json
|
| 13 |
+
|
| 14 |
+
# Load class names
|
| 15 |
+
with open('class_names.json', 'r') as f:
|
| 16 |
+
class_names = json.load(f)
|
| 17 |
+
|
| 18 |
+
# Device configuration
|
| 19 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 20 |
+
|
| 21 |
+
# Create model architecture (same as training)
|
| 22 |
+
def create_model(num_classes=200):
|
| 23 |
+
"""Create ConvNeXt model with same architecture as training"""
|
| 24 |
+
model = convnext_base(weights=None)
|
| 25 |
+
|
| 26 |
+
# Same classifier architecture as training
|
| 27 |
+
num_ftrs = model.classifier[2].in_features
|
| 28 |
+
model.classifier = nn.Sequential(
|
| 29 |
+
nn.Flatten(1),
|
| 30 |
+
nn.LayerNorm((num_ftrs,)),
|
| 31 |
+
nn.Dropout(0.6),
|
| 32 |
+
nn.Linear(num_ftrs, 512),
|
| 33 |
+
nn.GELU(),
|
| 34 |
+
nn.Dropout(0.5),
|
| 35 |
+
nn.Linear(512, num_classes)
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
return model
|
| 39 |
+
|
| 40 |
+
# Load the trained model
|
| 41 |
+
print("Loading model...")
|
| 42 |
+
model = create_model(num_classes=200)
|
| 43 |
+
|
| 44 |
+
# Load weights
|
| 45 |
+
checkpoint = torch.load('models/final_model.pth', map_location=device)
|
| 46 |
+
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
|
| 47 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 48 |
+
if 'val_acc' in checkpoint:
|
| 49 |
+
val_acc = checkpoint['val_acc']
|
| 50 |
+
print(f"Model loaded! Validation accuracy: {val_acc:.2f}%")
|
| 51 |
+
else:
|
| 52 |
+
model.load_state_dict(checkpoint)
|
| 53 |
+
print("Model loaded!")
|
| 54 |
+
|
| 55 |
+
model = model.to(device)
|
| 56 |
+
model.eval()
|
| 57 |
+
|
| 58 |
+
# Image preprocessing (same as validation transforms)
|
| 59 |
+
transform = transforms.Compose([
|
| 60 |
+
transforms.Resize((224, 224)),
|
| 61 |
+
transforms.ToTensor(),
|
| 62 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 63 |
+
])
|
| 64 |
+
|
| 65 |
+
def predict(image):
|
| 66 |
+
"""
|
| 67 |
+
Make prediction on uploaded image
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
image: PIL Image
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
dict: Top 5 predictions with confidence scores
|
| 74 |
+
"""
|
| 75 |
+
# Preprocess image
|
| 76 |
+
img_tensor = transform(image).unsqueeze(0).to(device)
|
| 77 |
+
|
| 78 |
+
# Make prediction
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
outputs = model(img_tensor)
|
| 81 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
| 82 |
+
|
| 83 |
+
# Get top 5 predictions
|
| 84 |
+
top5_prob, top5_idx = torch.topk(probabilities, 5)
|
| 85 |
+
|
| 86 |
+
# Format results
|
| 87 |
+
results = {}
|
| 88 |
+
for i in range(5):
|
| 89 |
+
class_id = top5_idx[0][i].item()
|
| 90 |
+
prob = top5_prob[0][i].item()
|
| 91 |
+
species_name = class_names.get(str(class_id), f"Class {class_id}")
|
| 92 |
+
results[species_name] = float(prob)
|
| 93 |
+
|
| 94 |
+
return results
|
| 95 |
+
|
| 96 |
+
# Create Gradio interface
|
| 97 |
+
title = "π¦ Bird Species Classification"
|
| 98 |
+
description = """
|
| 99 |
+
Upload an image of a bird and the model will predict the species!
|
| 100 |
+
|
| 101 |
+
**Model Details:**
|
| 102 |
+
- Architecture: ConvNeXt-Base (87M parameters)
|
| 103 |
+
- Dataset: CUB-200-2011 (200 bird species)
|
| 104 |
+
- Test Accuracy: 83.64%
|
| 105 |
+
- Average Per-Class Accuracy: 83.29%
|
| 106 |
+
|
| 107 |
+
**Training Strategy:**
|
| 108 |
+
- Transfer Learning with ImageNet pretrained weights
|
| 109 |
+
- Two-phase training: Frozen backbone (40 epochs) β Fine-tuning (20 epochs)
|
| 110 |
+
- Strong regularization: Dropout (0.6, 0.5), Label smoothing (0.2)
|
| 111 |
+
- Data augmentation: Rotation, flip, color jitter, random erasing
|
| 112 |
+
|
| 113 |
+
Upload a clear image of a bird to get started!
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
article = """
|
| 117 |
+
### About This Model
|
| 118 |
+
|
| 119 |
+
This bird classifier was trained on the CUB-200-2011 dataset containing 200 North American bird species.
|
| 120 |
+
The model uses ConvNeXt-Base architecture with modern training techniques to achieve high accuracy while
|
| 121 |
+
preventing overfitting.
|
| 122 |
+
|
| 123 |
+
**Key Features:**
|
| 124 |
+
- β
200 bird species classification
|
| 125 |
+
- β
State-of-the-art ConvNeXt architecture
|
| 126 |
+
- β
83.64% test accuracy
|
| 127 |
+
- β
Real-time inference
|
| 128 |
+
|
| 129 |
+
**Best Results:** Upload high-quality images with the bird clearly visible and centered.
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
examples = [
|
| 133 |
+
# You can add example images here if you have them
|
| 134 |
+
# ["examples/bird1.jpg"],
|
| 135 |
+
# ["examples/bird2.jpg"],
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
# Create interface
|
| 139 |
+
iface = gr.Interface(
|
| 140 |
+
fn=predict,
|
| 141 |
+
inputs=gr.Image(type="pil", label="Upload Bird Image"),
|
| 142 |
+
outputs=gr.Label(num_top_classes=5, label="Top 5 Predictions"),
|
| 143 |
+
title=title,
|
| 144 |
+
description=description,
|
| 145 |
+
article=article,
|
| 146 |
+
examples=examples if examples else None,
|
| 147 |
+
theme=gr.themes.Soft(),
|
| 148 |
+
allow_flagging="never",
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
# Launch the app
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
iface.launch()
|