Tradingview / app.py
Aryanshanu's picture
Update app.py
07aca8f verified
import gradio as gr
import pandas as pd
import yfinance as yf
from huggingface_hub import InferenceClient
# Initialize the Inference Client for the chatbot
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Function for the chatbot response
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
# Function for the trading screener
def trading_screener(price_threshold, volume_threshold):
stocks = ["AAPL", "MSFT", "GOOGL", "AMZN", "TSLA"]
data = []
for stock in stocks:
ticker = yf.Ticker(stock)
hist = ticker.history(period="1d")
current_price = hist['Close'].iloc[-1]
avg_volume = hist['Volume'].mean()
data.append({"Stock": stock, "Price": current_price, "Avg Volume": avg_volume})
df = pd.DataFrame(data)
filtered_df = df[(df['Price'] > price_threshold) & (df['Avg Volume'] > volume_threshold)]
return filtered_df
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Trading Screener and Chatbot")
# Trading Screener Section
with gr.Row():
with gr.Column():
gr.Markdown("## Trading Screener")
price_threshold = gr.Number(label="Price Threshold", value=100.0)
volume_threshold = gr.Number(label="Volume Threshold", value=1000000)
submit_btn = gr.Button("Run Screener")
output_df = gr.Dataframe(label="Filtered Stocks")
submit_btn.click(fn=trading_screener, inputs=[price_threshold, volume_threshold], outputs=output_df)
# Chatbot Section
gr.Markdown("## Chatbot")
chat_interface = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
# Launch the app
if __name__ == "__main__":
demo.launch()