Spaces:
Runtime error
Runtime error
first commit
Browse files- P1W1D1PM - Machine Learning Problem Framing.csv +0 -0
- eda.py +67 -0
- list_cat_cols.txt +1 -0
- list_num_cols.txt +1 -0
- main.py +11 -0
- model_encoder.pkl +3 -0
- model_lin_reg.pkl +3 -0
- model_scaler.pkl +3 -0
- prediction.py +95 -0
- requirement.txt +6 -0
P1W1D1PM - Machine Learning Problem Framing.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eda.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import plotly.express as px
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="FIFA 2022 Player Rating Prediction",
|
11 |
+
layout='wide',
|
12 |
+
initial_sidebar_state='expanded'
|
13 |
+
)
|
14 |
+
def run(): # Agar bisa dipanggil oleh code main.
|
15 |
+
# Membuat Title
|
16 |
+
st.title('FIFA 2022 Player Rating Prediction')
|
17 |
+
|
18 |
+
# Membuat Sub Header
|
19 |
+
st.subheader('EDA untuk Analisa Dataset FIFA 2022')
|
20 |
+
|
21 |
+
# Membuat Deskripsi
|
22 |
+
st.write('Page ini dibuat oleh *Ardiansyah Arya Salvinia')
|
23 |
+
|
24 |
+
# Menambahkan Gambar
|
25 |
+
image = Image.open('joshua-hoehne-8ZvTRSRdsOA-unsplash.jpg')
|
26 |
+
st.image(image, caption='FIFA 2022')
|
27 |
+
|
28 |
+
# Menambahkan Garis Lurus
|
29 |
+
st.markdown('---')
|
30 |
+
|
31 |
+
# Magic Syntax untuk menuliskan text beberapa baris
|
32 |
+
'''
|
33 |
+
Pada page kali ini, penulis akan melakukan eksplorasi sederhana.
|
34 |
+
Dataset yang digunakan adalah dataset FIFA 2022.
|
35 |
+
Dataset ini berasal dari web sofifa.com.
|
36 |
+
'''
|
37 |
+
|
38 |
+
# Show Dataframe
|
39 |
+
data = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/FSDS_Guidelines/master/p1/v3/w1/P1W1D1PM%20-%20Machine%20Learning%20Problem%20Framing.csv')
|
40 |
+
st.dataframe(data)
|
41 |
+
|
42 |
+
# Membuat BarPlot
|
43 |
+
st.write('### Plot AttackingWorkRate')
|
44 |
+
fig = plt.figure(figsize=(15,5))
|
45 |
+
sns.countplot(x='AttackingWorkRate',data=data)
|
46 |
+
st.pyplot(fig)
|
47 |
+
|
48 |
+
# Membuat Histogram
|
49 |
+
st.write('### Histogram of Rating')
|
50 |
+
fig = plt.figure(figsize=(15,5))
|
51 |
+
sns.histplot(data['Overall'], bins=30, kde=True)
|
52 |
+
st.pyplot(fig)
|
53 |
+
|
54 |
+
# Membuat Histogram Berdasarkan Input User
|
55 |
+
st.write('#### Histogram Berdasarkan Input User')
|
56 |
+
pilihan = st.radio(' Pilih Column : ', ('Age','Weight','Height','ShootingTotal'))
|
57 |
+
fig = plt.figure(figsize=(15,5))
|
58 |
+
sns.histplot(data[pilihan], bins=30, kde=True)
|
59 |
+
st.pyplot(fig)
|
60 |
+
|
61 |
+
# Membuat Plotly Plot
|
62 |
+
st.write('#### Plotly Plot - ValueEUR dengan Overall')
|
63 |
+
fig = px.scatter(data, x='ValueEUR', y='Overall', hover_data=['Name','Age'])
|
64 |
+
st.plotly_chart(fig)
|
65 |
+
|
66 |
+
if __name__ == '__main__': # Agar python bisa dibuka standalone tanpa membuka main.
|
67 |
+
run()
|
list_cat_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["AttackingWorkRate", "DefensiveWorkRate"]
|
list_num_cols.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["Age", "Height", "Weight", "Price", "PaceTotal", "ShootingTotal", "PassingTotal", "DribblingTotal", "DefendingTotal", "PhysicalityTotal"]
|
main.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Digunakan sebagai pusat code yang akan digunakan user.
|
2 |
+
import streamlit as st
|
3 |
+
import eda
|
4 |
+
import prediction
|
5 |
+
|
6 |
+
navigation = st.sidebar.selectbox('Pilh Halaman : ', ('EDA', 'Predict A Player'))
|
7 |
+
|
8 |
+
if navigation == 'EDA':
|
9 |
+
eda.run()
|
10 |
+
else:
|
11 |
+
prediction.run()
|
model_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0487ce8b546fe0a6b798cb570bf6f876b6f7c687b42a3a1d4e690b791b95fcdb
|
3 |
+
size 1361
|
model_lin_reg.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08f34fed46db68589436b95a9f085a5b38f053b2d98dac710a9fe5310bed7328
|
3 |
+
size 861
|
model_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f66a44b8a7e687aae2805b4ea993c7eaf9eefd8b77f5e85b9fd9a1e7d4ee69c1
|
3 |
+
size 1590
|
prediction.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import seaborn as sns
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import plotly.express as px
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
# Load All Files
|
10 |
+
|
11 |
+
import joblib
|
12 |
+
import json
|
13 |
+
|
14 |
+
# Load All Files
|
15 |
+
with open('model_lin_reg.pkl', 'rb') as file_1:
|
16 |
+
model_lin_reg = joblib.load(file_1)
|
17 |
+
|
18 |
+
with open('model_scaler.pkl', 'rb') as file_2:
|
19 |
+
model_scaler = joblib.load(file_2)
|
20 |
+
|
21 |
+
with open('model_encoder.pkl', 'rb') as file_3:
|
22 |
+
model_encoder = joblib.load(file_3)
|
23 |
+
|
24 |
+
with open('list_num_cols.txt', 'r') as file_4:
|
25 |
+
list_num_cols = json.load(file_4)
|
26 |
+
|
27 |
+
with open('list_cat_cols.txt', 'r') as file_5:
|
28 |
+
list_cat_cols = json.load(file_5)
|
29 |
+
|
30 |
+
|
31 |
+
def run(): # Agar bisa dipanggil oleh main.
|
32 |
+
# Membuat Form
|
33 |
+
with st.form(key='form_parameters'):
|
34 |
+
name = st.text_input('Name', value='') # Value = nilai default
|
35 |
+
age = st.number_input('Age', min_value=16, max_value=60, value=25, step=1, help='Usia Pemain') # Help deskripsi kolom form
|
36 |
+
weight = st.number_input('Weight', min_value=50, max_value=150, value=70)
|
37 |
+
height = st.number_input('Height',min_value=50, max_value=250, value=170)
|
38 |
+
# Bisa menggunakan untuk slider `price = st.slider('Price', 0,100000000)`
|
39 |
+
price = st.number_input('Price', min_value=0, max_value=1000000000, value=0)
|
40 |
+
st.markdown('---')
|
41 |
+
|
42 |
+
attacking_work_rate = st.selectbox('AttackingWorkRate', ('Low','Medium','High'), index=1)
|
43 |
+
defensive_work_rate = st.selectbox('DefensiveWorkRate', ('Low','Medium','High'), index=2)
|
44 |
+
st.markdown('---')
|
45 |
+
|
46 |
+
pace = st.number_input('Pace', min_value=0, max_value=100, value=50)
|
47 |
+
shooting = st.number_input('Shooting', min_value=0, max_value=100, value=50)
|
48 |
+
passing = st.number_input('Passing', min_value=0, max_value=100, value=50)
|
49 |
+
dribbling = st.number_input('Dribbling', min_value=0, max_value=100, value=50)
|
50 |
+
defending = st.number_input('Defending', min_value=0, max_value=100, value=50)
|
51 |
+
physicality = st.number_input('Physicality', min_value=0, max_value=100, value=50)
|
52 |
+
|
53 |
+
|
54 |
+
submitted = st.form_submit_button('Predict')
|
55 |
+
|
56 |
+
data_inf = { # Label harus sama dengan CSV, variabel bebas.
|
57 |
+
'Name' : name,
|
58 |
+
'Age' : age,
|
59 |
+
'Height' : height,
|
60 |
+
'Weight' : weight,
|
61 |
+
'Price' : price,
|
62 |
+
'AttackingWorkRate' : attacking_work_rate,
|
63 |
+
'DefensiveWorkRate' : defensive_work_rate,
|
64 |
+
'PaceTotal' : pace,
|
65 |
+
'ShootingTotal' : shooting,
|
66 |
+
'PassingTotal' : passing,
|
67 |
+
'DribblingTotal' : dribbling,
|
68 |
+
'DefendingTotal' : defending,
|
69 |
+
'PhysicalityTotal' : physicality
|
70 |
+
}
|
71 |
+
|
72 |
+
data_inf = pd.DataFrame([data_inf])
|
73 |
+
st.dataframe(data_inf)
|
74 |
+
|
75 |
+
if submitted:
|
76 |
+
# Split between Numerical Columns and Categorical Columns
|
77 |
+
data_inf_num = data_inf[list_num_cols]
|
78 |
+
data_inf_cat = data_inf[list_cat_cols]
|
79 |
+
|
80 |
+
|
81 |
+
# Feature Scaling and Feature Encoding
|
82 |
+
data_inf_num_scaled = model_scaler.transform(data_inf_num)
|
83 |
+
data_inf_cat_encoded = model_encoder.transform(data_inf_cat)
|
84 |
+
|
85 |
+
|
86 |
+
# Concate Numerical Columns and Categorical Columns
|
87 |
+
data_inf_final = np.concatenate([data_inf_num_scaled, data_inf_cat_encoded], axis=1)
|
88 |
+
|
89 |
+
# Predict using Linear regression
|
90 |
+
y_pred_inf = model_lin_reg.predict(data_inf_final)
|
91 |
+
|
92 |
+
st.write('# Rating : ', str(int(y_pred_inf)))
|
93 |
+
|
94 |
+
if __name__ == '__main__': # Agar python bisa dibuka standalone tanpa membuka main.
|
95 |
+
run()
|
requirement.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy
|
3 |
+
seaborn
|
4 |
+
matplotlib
|
5 |
+
joblib
|
6 |
+
scikit-learn==1.0.2
|