Update app3.py
Browse files
app3.py
CHANGED
|
@@ -2,15 +2,21 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
from pandasai import Agent
|
|
|
|
| 5 |
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
| 6 |
from langchain_community.vectorstores import FAISS
|
| 7 |
from langchain_openai import ChatOpenAI
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
from langchain.schema import Document
|
| 10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Set the title of the app
|
| 13 |
-
st.title("Data Analyzer")
|
| 14 |
|
| 15 |
# Fetch API keys from environment variables
|
| 16 |
api_key = os.getenv("OPENAI_API_KEY")
|
|
@@ -20,85 +26,109 @@ if not api_key or not pandasai_api_key:
|
|
| 20 |
st.error(
|
| 21 |
"API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables."
|
| 22 |
)
|
|
|
|
| 23 |
else:
|
| 24 |
# File uploader
|
| 25 |
uploaded_file = st.file_uploader("Upload an Excel or CSV file", type=["xlsx", "csv"])
|
| 26 |
|
| 27 |
if uploaded_file is not None:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
st.
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
else:
|
| 104 |
st.info("Please upload a file to begin analysis.")
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import plotly.express as px
|
| 4 |
from pandasai import Agent
|
| 5 |
+
from pandasai.llm.openai import OpenAI
|
| 6 |
from langchain_community.embeddings.openai import OpenAIEmbeddings
|
| 7 |
from langchain_community.vectorstores import FAISS
|
| 8 |
from langchain_openai import ChatOpenAI
|
| 9 |
from langchain.chains import RetrievalQA
|
| 10 |
from langchain.schema import Document
|
| 11 |
import os
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
# Configure logging
|
| 15 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
|
| 18 |
# Set the title of the app
|
| 19 |
+
st.title("Data Analyzer on Hugging Face Spaces")
|
| 20 |
|
| 21 |
# Fetch API keys from environment variables
|
| 22 |
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 26 |
st.error(
|
| 27 |
"API keys not found in the environment. Please set the 'OPENAI_API_KEY' and 'PANDASAI_API_KEY' environment variables."
|
| 28 |
)
|
| 29 |
+
logger.error("API keys not found. Ensure they are set in the environment variables.")
|
| 30 |
else:
|
| 31 |
# File uploader
|
| 32 |
uploaded_file = st.file_uploader("Upload an Excel or CSV file", type=["xlsx", "csv"])
|
| 33 |
|
| 34 |
if uploaded_file is not None:
|
| 35 |
+
try:
|
| 36 |
+
# Load the data
|
| 37 |
+
if uploaded_file.name.endswith('.xlsx'):
|
| 38 |
+
df = pd.read_excel(uploaded_file)
|
| 39 |
+
else:
|
| 40 |
+
df = pd.read_csv(uploaded_file)
|
| 41 |
+
|
| 42 |
+
st.write("Data Preview:")
|
| 43 |
+
st.write(df.head())
|
| 44 |
+
logger.info(f"Uploaded file loaded successfully with shape: {df.shape}")
|
| 45 |
+
|
| 46 |
+
# Initialize PandasAI Agent
|
| 47 |
+
llm = OpenAI(api_key=pandasai_api_key, max_tokens=1500, timeout=60)
|
| 48 |
+
agent = Agent(df, llm=llm)
|
| 49 |
+
|
| 50 |
+
# Convert the DataFrame into documents for RAG
|
| 51 |
+
documents = [
|
| 52 |
+
Document(
|
| 53 |
+
page_content=", ".join([f"{col}: {row[col]}" for col in df.columns if pd.notnull(row[col])]),
|
| 54 |
+
metadata={"index": index}
|
| 55 |
+
)
|
| 56 |
+
for index, row in df.iterrows()
|
| 57 |
+
]
|
| 58 |
+
logger.info(f"{len(documents)} documents created for RAG.")
|
| 59 |
+
|
| 60 |
+
# Set up RAG
|
| 61 |
+
embeddings = OpenAIEmbeddings()
|
| 62 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
| 63 |
+
retriever = vectorstore.as_retriever()
|
| 64 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 65 |
+
llm=ChatOpenAI(),
|
| 66 |
+
chain_type="stuff",
|
| 67 |
+
retriever=retriever
|
| 68 |
)
|
| 69 |
+
|
| 70 |
+
# Create tabs
|
| 71 |
+
tab1, tab2, tab3 = st.tabs(["PandasAI Analysis", "RAG Q&A", "Data Visualization"])
|
| 72 |
+
|
| 73 |
+
# Tab 1: PandasAI Analysis
|
| 74 |
+
with tab1:
|
| 75 |
+
st.header("Data Analysis using PandasAI")
|
| 76 |
+
pandas_question = st.text_input("Ask a question about the data (PandasAI):")
|
| 77 |
+
if pandas_question:
|
| 78 |
+
try:
|
| 79 |
+
result = agent.chat(pandas_question)
|
| 80 |
+
if result:
|
| 81 |
+
st.write("PandasAI Answer:", result)
|
| 82 |
+
else:
|
| 83 |
+
st.warning("PandasAI returned no result. Please try another question.")
|
| 84 |
+
except Exception as e:
|
| 85 |
+
st.error(f"Error from PandasAI: {e}")
|
| 86 |
+
logger.error(f"PandasAI error: {e}")
|
| 87 |
+
|
| 88 |
+
# Tab 2: RAG Q&A
|
| 89 |
+
with tab2:
|
| 90 |
+
st.header("Question Answering using RAG")
|
| 91 |
+
rag_question = st.text_input("Ask a question about the data (RAG):")
|
| 92 |
+
if rag_question:
|
| 93 |
+
try:
|
| 94 |
+
result = qa_chain.run(rag_question)
|
| 95 |
+
st.write("RAG Answer:", result)
|
| 96 |
+
except Exception as e:
|
| 97 |
+
st.error(f"Error from RAG Q&A: {e}")
|
| 98 |
+
logger.error(f"RAG error: {e}")
|
| 99 |
+
|
| 100 |
+
# Tab 3: Data Visualization
|
| 101 |
+
with tab3:
|
| 102 |
+
st.header("Data Visualization")
|
| 103 |
+
viz_question = st.text_input("What kind of graph would you like to create? (e.g., 'Show a scatter plot of salary vs experience')")
|
| 104 |
+
if viz_question:
|
| 105 |
+
try:
|
| 106 |
+
result = agent.chat(viz_question)
|
| 107 |
+
|
| 108 |
+
# Since PandasAI output is text, extract executable code
|
| 109 |
+
import re
|
| 110 |
+
code_pattern = r'```python\n(.*?)\n```'
|
| 111 |
+
code_match = re.search(code_pattern, result, re.DOTALL)
|
| 112 |
+
|
| 113 |
+
if code_match:
|
| 114 |
+
viz_code = code_match.group(1)
|
| 115 |
+
logger.debug(f"Extracted visualization code: {viz_code}")
|
| 116 |
+
|
| 117 |
+
# Modify code to use Plotly (px) instead of matplotlib (plt)
|
| 118 |
+
viz_code = viz_code.replace('plt.', 'px.')
|
| 119 |
+
viz_code = viz_code.replace('plt.show()', 'fig = px.scatter(df, x=x, y=y)')
|
| 120 |
+
|
| 121 |
+
# Execute the code and display the chart
|
| 122 |
+
exec(viz_code)
|
| 123 |
+
st.plotly_chart(fig)
|
| 124 |
+
else:
|
| 125 |
+
st.warning("Unable to generate a graph. Please try a different query.")
|
| 126 |
+
logger.warning("No valid visualization code found in PandasAI response.")
|
| 127 |
+
except Exception as e:
|
| 128 |
+
st.error(f"An error occurred: {e}")
|
| 129 |
+
logger.error(f"Visualization error: {e}")
|
| 130 |
+
except Exception as e:
|
| 131 |
+
st.error(f"An error occurred while processing the file: {e}")
|
| 132 |
+
logger.error(f"File processing error: {e}")
|
| 133 |
else:
|
| 134 |
st.info("Please upload a file to begin analysis.")
|