ArunKr's picture
Model updated
d27e3b8
import os
import gradio as gr
import requests
import pandas as pd
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, VisitWebpageTool
from smolagents import OpenAIServerModel
# Constants
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
import os
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, VisitWebpageTool
class GAIAAgent:
def __init__(self):
api_key = os.getenv("NEBIUS_API_KEY")
if not api_key:
raise ValueError("NEBIUS_API_KEY environment variable is not set. Please set this to your Hugging Face API key.")
# self.model = InferenceClientModel(
# model_id="deepseek-ai/DeepSeek-R1",
# api_key=api_key
# )
# from smolagents import InferenceClientModel
self.model = InferenceClientModel(
model_id="Qwen/Qwen3-235B-A22B",
provider="nebius")
# self.model = OpenAIServerModel(
# model_id="Qwen/Qwen3-235B-A22B",
# api_base="https://api.studio.nebius.com/", # Leave this blank to query OpenAI servers.
# api_key=api_key, # Switch to the API key for the server you're targeting.
# )
self.tools = [DuckDuckGoSearchTool(), VisitWebpageTool()]
self.agent = CodeAgent(tools=self.tools, model=self.model, max_steps=10)
def __call__(self, question: str, file_path: str = None) -> str:
try:
if file_path:
question += f"\nAttached file: {file_path}"
response = self.agent.run(question)
return response
except Exception as e:
print(f"Error running agent: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
if not profile:
return "Please Login to Hugging Face with the button.", None
username = profile.username
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent = GAIAAgent()
agent_code = f"https://huggingface.co/spaces/{os.getenv('ArunKr/Assignment_Agents')}/tree/main"
response = requests.get(questions_url, timeout=15)
questions_data = response.json()
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
file_name = item.get("file_name", None)
submitted_answer = agent(question_text, file_name)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
submission_response = requests.post(submit_url, json=submission_data, timeout=60)
result_data = submission_response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# GAIA Benchmark Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
inputs=None,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
demo.launch(debug=True, share=False)