|
|
|
import argparse |
|
import glob |
|
import multiprocessing as mp |
|
import numpy as np |
|
import os |
|
import tempfile |
|
import time |
|
import warnings |
|
import cv2 |
|
import tqdm |
|
|
|
from detectron2.config import get_cfg |
|
from detectron2.data.detection_utils import read_image |
|
from detectron2.utils.logger import setup_logger |
|
|
|
from predictor import VisualizationDemo |
|
|
|
|
|
WINDOW_NAME = "COCO detections" |
|
|
|
|
|
def setup_cfg(args): |
|
|
|
cfg = get_cfg() |
|
|
|
|
|
|
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
|
|
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold |
|
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold |
|
cfg.freeze() |
|
return cfg |
|
|
|
|
|
def get_parser(): |
|
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin configs") |
|
parser.add_argument( |
|
"--config-file", |
|
default="configs/quick_schedules/mask_rcnn_R_50_FPN_inference_acc_test.yaml", |
|
metavar="FILE", |
|
help="path to config file", |
|
) |
|
parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.") |
|
parser.add_argument("--video-input", help="Path to video file.") |
|
parser.add_argument( |
|
"--input", |
|
nargs="+", |
|
help="A list of space separated input images; " |
|
"or a single glob pattern such as 'directory/*.jpg'", |
|
) |
|
parser.add_argument( |
|
"--output", |
|
help="A file or directory to save output visualizations. " |
|
"If not given, will show output in an OpenCV window.", |
|
) |
|
|
|
parser.add_argument( |
|
"--confidence-threshold", |
|
type=float, |
|
default=0.5, |
|
help="Minimum score for instance predictions to be shown", |
|
) |
|
parser.add_argument( |
|
"--opts", |
|
help="Modify config options using the command-line 'KEY VALUE' pairs", |
|
default=[], |
|
nargs=argparse.REMAINDER, |
|
) |
|
return parser |
|
|
|
|
|
def test_opencv_video_format(codec, file_ext): |
|
with tempfile.TemporaryDirectory(prefix="video_format_test") as dir: |
|
filename = os.path.join(dir, "test_file" + file_ext) |
|
writer = cv2.VideoWriter( |
|
filename=filename, |
|
fourcc=cv2.VideoWriter_fourcc(*codec), |
|
fps=float(30), |
|
frameSize=(10, 10), |
|
isColor=True, |
|
) |
|
[writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)] |
|
writer.release() |
|
if os.path.isfile(filename): |
|
return True |
|
return False |
|
|
|
|
|
if __name__ == "__main__": |
|
mp.set_start_method("spawn", force=True) |
|
args = get_parser().parse_args() |
|
setup_logger(name="fvcore") |
|
logger = setup_logger() |
|
logger.info("Arguments: " + str(args)) |
|
|
|
cfg = setup_cfg(args) |
|
|
|
demo = VisualizationDemo(cfg) |
|
|
|
if args.input: |
|
if len(args.input) == 1: |
|
args.input = glob.glob(os.path.expanduser(args.input[0])) |
|
assert args.input, "The input path(s) was not found" |
|
for path in tqdm.tqdm(args.input, disable=not args.output): |
|
|
|
img = read_image(path, format="BGR") |
|
start_time = time.time() |
|
predictions, visualized_output = demo.run_on_image(img) |
|
logger.info( |
|
"{}: {} in {:.2f}s".format( |
|
path, |
|
"detected {} instances".format(len(predictions["instances"])) |
|
if "instances" in predictions |
|
else "finished", |
|
time.time() - start_time, |
|
) |
|
) |
|
|
|
if args.output: |
|
if os.path.isdir(args.output): |
|
assert os.path.isdir(args.output), args.output |
|
out_filename = os.path.join(args.output, os.path.basename(path)) |
|
else: |
|
assert len(args.input) == 1, "Please specify a directory with args.output" |
|
out_filename = args.output |
|
visualized_output.save(out_filename) |
|
else: |
|
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) |
|
cv2.imshow(WINDOW_NAME, visualized_output.get_image()[:, :, ::-1]) |
|
if cv2.waitKey(0) == 27: |
|
break |
|
elif args.webcam: |
|
assert args.input is None, "Cannot have both --input and --webcam!" |
|
assert args.output is None, "output not yet supported with --webcam!" |
|
cam = cv2.VideoCapture(0) |
|
for vis in tqdm.tqdm(demo.run_on_video(cam)): |
|
cv2.namedWindow(WINDOW_NAME, cv2.WINDOW_NORMAL) |
|
cv2.imshow(WINDOW_NAME, vis) |
|
if cv2.waitKey(1) == 27: |
|
break |
|
cam.release() |
|
cv2.destroyAllWindows() |
|
elif args.video_input: |
|
video = cv2.VideoCapture(args.video_input) |
|
width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
frames_per_second = video.get(cv2.CAP_PROP_FPS) |
|
num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
basename = os.path.basename(args.video_input) |
|
codec, file_ext = ( |
|
("x264", ".mkv") if test_opencv_video_format("x264", ".mkv") else ("mp4v", ".mp4") |
|
) |
|
if codec == ".mp4v": |
|
warnings.warn("x264 codec not available, switching to mp4v") |
|
if args.output: |
|
if os.path.isdir(args.output): |
|
output_fname = os.path.join(args.output, basename) |
|
output_fname = os.path.splitext(output_fname)[0] + file_ext |
|
else: |
|
output_fname = args.output |
|
assert not os.path.isfile(output_fname), output_fname |
|
output_file = cv2.VideoWriter( |
|
filename=output_fname, |
|
|
|
|
|
fourcc=cv2.VideoWriter_fourcc(*codec), |
|
fps=float(frames_per_second), |
|
frameSize=(width, height), |
|
isColor=True, |
|
) |
|
assert os.path.isfile(args.video_input) |
|
for vis_frame in tqdm.tqdm(demo.run_on_video(video), total=num_frames): |
|
if args.output: |
|
output_file.write(vis_frame) |
|
else: |
|
cv2.namedWindow(basename, cv2.WINDOW_NORMAL) |
|
cv2.imshow(basename, vis_frame) |
|
if cv2.waitKey(1) == 27: |
|
break |
|
video.release() |
|
if args.output: |
|
output_file.release() |
|
else: |
|
cv2.destroyAllWindows() |
|
|