|
|
|
|
|
|
|
|
|
""" |
|
This file registers pre-defined datasets at hard-coded paths, and their metadata. |
|
|
|
We hard-code metadata for common datasets. This will enable: |
|
1. Consistency check when loading the datasets |
|
2. Use models on these standard datasets directly and run demos, |
|
without having to download the dataset annotations |
|
|
|
We hard-code some paths to the dataset that's assumed to |
|
exist in "./datasets/". |
|
|
|
Users SHOULD NOT use this file to create new dataset / metadata for new dataset. |
|
To add new dataset, refer to the tutorial "docs/DATASETS.md". |
|
""" |
|
|
|
import os |
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog |
|
|
|
from .builtin_meta import ADE20K_SEM_SEG_CATEGORIES, _get_builtin_metadata |
|
from .cityscapes import load_cityscapes_instances, load_cityscapes_semantic |
|
from .cityscapes_panoptic import register_all_cityscapes_panoptic |
|
from .coco import load_sem_seg, register_coco_instances |
|
from .coco_panoptic import register_coco_panoptic, register_coco_panoptic_separated |
|
from .lvis import get_lvis_instances_meta, register_lvis_instances |
|
from .pascal_voc import register_pascal_voc |
|
|
|
|
|
|
|
_PREDEFINED_SPLITS_COCO = {} |
|
_PREDEFINED_SPLITS_COCO["coco"] = { |
|
"coco_2014_train": ("coco/train2014", "coco/annotations/instances_train2014.json"), |
|
"coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"), |
|
"coco_2014_minival": ("coco/val2014", "coco/annotations/instances_minival2014.json"), |
|
"coco_2014_valminusminival": ( |
|
"coco/val2014", |
|
"coco/annotations/instances_valminusminival2014.json", |
|
), |
|
"coco_2017_train": ("coco/train2017", "coco/annotations/instances_train2017.json"), |
|
"coco_2017_val": ("coco/val2017", "coco/annotations/instances_val2017.json"), |
|
"coco_2017_test": ("coco/test2017", "coco/annotations/image_info_test2017.json"), |
|
"coco_2017_test-dev": ("coco/test2017", "coco/annotations/image_info_test-dev2017.json"), |
|
"coco_2017_val_100": ("coco/val2017", "coco/annotations/instances_val2017_100.json"), |
|
} |
|
|
|
_PREDEFINED_SPLITS_COCO["coco_person"] = { |
|
"keypoints_coco_2014_train": ( |
|
"coco/train2014", |
|
"coco/annotations/person_keypoints_train2014.json", |
|
), |
|
"keypoints_coco_2014_val": ("coco/val2014", "coco/annotations/person_keypoints_val2014.json"), |
|
"keypoints_coco_2014_minival": ( |
|
"coco/val2014", |
|
"coco/annotations/person_keypoints_minival2014.json", |
|
), |
|
"keypoints_coco_2014_valminusminival": ( |
|
"coco/val2014", |
|
"coco/annotations/person_keypoints_valminusminival2014.json", |
|
), |
|
"keypoints_coco_2017_train": ( |
|
"coco/train2017", |
|
"coco/annotations/person_keypoints_train2017.json", |
|
), |
|
"keypoints_coco_2017_val": ("coco/val2017", "coco/annotations/person_keypoints_val2017.json"), |
|
"keypoints_coco_2017_val_100": ( |
|
"coco/val2017", |
|
"coco/annotations/person_keypoints_val2017_100.json", |
|
), |
|
} |
|
|
|
|
|
_PREDEFINED_SPLITS_COCO_PANOPTIC = { |
|
"coco_2017_train_panoptic": ( |
|
|
|
"coco/panoptic_train2017", |
|
"coco/annotations/panoptic_train2017.json", |
|
|
|
|
|
|
|
|
|
|
|
"coco/panoptic_stuff_train2017", |
|
), |
|
"coco_2017_val_panoptic": ( |
|
"coco/panoptic_val2017", |
|
"coco/annotations/panoptic_val2017.json", |
|
"coco/panoptic_stuff_val2017", |
|
), |
|
"coco_2017_val_100_panoptic": ( |
|
"coco/panoptic_val2017_100", |
|
"coco/annotations/panoptic_val2017_100.json", |
|
"coco/panoptic_stuff_val2017_100", |
|
), |
|
} |
|
|
|
|
|
def register_all_coco(root): |
|
for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_COCO.items(): |
|
for key, (image_root, json_file) in splits_per_dataset.items(): |
|
|
|
register_coco_instances( |
|
key, |
|
_get_builtin_metadata(dataset_name), |
|
os.path.join(root, json_file) if "://" not in json_file else json_file, |
|
os.path.join(root, image_root), |
|
) |
|
|
|
for ( |
|
prefix, |
|
(panoptic_root, panoptic_json, semantic_root), |
|
) in _PREDEFINED_SPLITS_COCO_PANOPTIC.items(): |
|
prefix_instances = prefix[: -len("_panoptic")] |
|
instances_meta = MetadataCatalog.get(prefix_instances) |
|
image_root, instances_json = instances_meta.image_root, instances_meta.json_file |
|
|
|
|
|
register_coco_panoptic_separated( |
|
prefix, |
|
_get_builtin_metadata("coco_panoptic_separated"), |
|
image_root, |
|
os.path.join(root, panoptic_root), |
|
os.path.join(root, panoptic_json), |
|
os.path.join(root, semantic_root), |
|
instances_json, |
|
) |
|
|
|
|
|
register_coco_panoptic( |
|
prefix, |
|
_get_builtin_metadata("coco_panoptic_standard"), |
|
image_root, |
|
os.path.join(root, panoptic_root), |
|
os.path.join(root, panoptic_json), |
|
instances_json, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
_PREDEFINED_SPLITS_LVIS = { |
|
"lvis_v1": { |
|
"lvis_v1_train": ("coco/", "lvis/lvis_v1_train.json"), |
|
"lvis_v1_val": ("coco/", "lvis/lvis_v1_val.json"), |
|
"lvis_v1_test_dev": ("coco/", "lvis/lvis_v1_image_info_test_dev.json"), |
|
"lvis_v1_test_challenge": ("coco/", "lvis/lvis_v1_image_info_test_challenge.json"), |
|
}, |
|
"lvis_v0.5": { |
|
"lvis_v0.5_train": ("coco/", "lvis/lvis_v0.5_train.json"), |
|
"lvis_v0.5_val": ("coco/", "lvis/lvis_v0.5_val.json"), |
|
"lvis_v0.5_val_rand_100": ("coco/", "lvis/lvis_v0.5_val_rand_100.json"), |
|
"lvis_v0.5_test": ("coco/", "lvis/lvis_v0.5_image_info_test.json"), |
|
}, |
|
"lvis_v0.5_cocofied": { |
|
"lvis_v0.5_train_cocofied": ("coco/", "lvis/lvis_v0.5_train_cocofied.json"), |
|
"lvis_v0.5_val_cocofied": ("coco/", "lvis/lvis_v0.5_val_cocofied.json"), |
|
}, |
|
} |
|
|
|
|
|
def register_all_lvis(root): |
|
for dataset_name, splits_per_dataset in _PREDEFINED_SPLITS_LVIS.items(): |
|
for key, (image_root, json_file) in splits_per_dataset.items(): |
|
register_lvis_instances( |
|
key, |
|
get_lvis_instances_meta(dataset_name), |
|
os.path.join(root, json_file) if "://" not in json_file else json_file, |
|
os.path.join(root, image_root), |
|
) |
|
|
|
|
|
|
|
_RAW_CITYSCAPES_SPLITS = { |
|
"cityscapes_fine_{task}_train": ("cityscapes/leftImg8bit/train/", "cityscapes/gtFine/train/"), |
|
"cityscapes_fine_{task}_val": ("cityscapes/leftImg8bit/val/", "cityscapes/gtFine/val/"), |
|
"cityscapes_fine_{task}_test": ("cityscapes/leftImg8bit/test/", "cityscapes/gtFine/test/"), |
|
} |
|
|
|
|
|
def register_all_cityscapes(root): |
|
for key, (image_dir, gt_dir) in _RAW_CITYSCAPES_SPLITS.items(): |
|
meta = _get_builtin_metadata("cityscapes") |
|
image_dir = os.path.join(root, image_dir) |
|
gt_dir = os.path.join(root, gt_dir) |
|
|
|
inst_key = key.format(task="instance_seg") |
|
DatasetCatalog.register( |
|
inst_key, |
|
lambda x=image_dir, y=gt_dir: load_cityscapes_instances( |
|
x, y, from_json=True, to_polygons=True |
|
), |
|
) |
|
MetadataCatalog.get(inst_key).set( |
|
image_dir=image_dir, gt_dir=gt_dir, evaluator_type="cityscapes_instance", **meta |
|
) |
|
|
|
sem_key = key.format(task="sem_seg") |
|
DatasetCatalog.register( |
|
sem_key, lambda x=image_dir, y=gt_dir: load_cityscapes_semantic(x, y) |
|
) |
|
MetadataCatalog.get(sem_key).set( |
|
image_dir=image_dir, |
|
gt_dir=gt_dir, |
|
evaluator_type="cityscapes_sem_seg", |
|
ignore_label=255, |
|
**meta, |
|
) |
|
|
|
|
|
|
|
def register_all_pascal_voc(root): |
|
SPLITS = [ |
|
("voc_2007_trainval", "VOC2007", "trainval"), |
|
("voc_2007_train", "VOC2007", "train"), |
|
("voc_2007_val", "VOC2007", "val"), |
|
("voc_2007_test", "VOC2007", "test"), |
|
("voc_2012_trainval", "VOC2012", "trainval"), |
|
("voc_2012_train", "VOC2012", "train"), |
|
("voc_2012_val", "VOC2012", "val"), |
|
] |
|
for name, dirname, split in SPLITS: |
|
year = 2007 if "2007" in name else 2012 |
|
register_pascal_voc(name, os.path.join(root, dirname), split, year) |
|
MetadataCatalog.get(name).evaluator_type = "pascal_voc" |
|
|
|
|
|
def register_all_ade20k(root): |
|
root = os.path.join(root, "ADEChallengeData2016") |
|
for name, dirname in [("train", "training"), ("val", "validation")]: |
|
image_dir = os.path.join(root, "images", dirname) |
|
gt_dir = os.path.join(root, "annotations_detectron2", dirname) |
|
name = f"ade20k_sem_seg_{name}" |
|
DatasetCatalog.register( |
|
name, lambda x=image_dir, y=gt_dir: load_sem_seg(y, x, gt_ext="png", image_ext="jpg") |
|
) |
|
MetadataCatalog.get(name).set( |
|
stuff_classes=ADE20K_SEM_SEG_CATEGORIES[:], |
|
image_root=image_dir, |
|
sem_seg_root=gt_dir, |
|
evaluator_type="sem_seg", |
|
ignore_label=255, |
|
) |
|
|
|
|
|
|
|
|
|
if __name__.endswith(".builtin"): |
|
|
|
_root = os.path.expanduser(os.getenv("DETECTRON2_DATASETS", "datasets")) |
|
register_all_coco(_root) |
|
register_all_lvis(_root) |
|
register_all_cityscapes(_root) |
|
register_all_cityscapes_panoptic(_root) |
|
register_all_pascal_voc(_root) |
|
register_all_ade20k(_root) |
|
|