|
|
|
|
|
|
|
import typing |
|
from typing import Any, List |
|
import fvcore |
|
from fvcore.nn import activation_count, flop_count, parameter_count, parameter_count_table |
|
from torch import nn |
|
|
|
from detectron2.export import TracingAdapter |
|
|
|
__all__ = [ |
|
"activation_count_operators", |
|
"flop_count_operators", |
|
"parameter_count_table", |
|
"parameter_count", |
|
"FlopCountAnalysis", |
|
] |
|
|
|
FLOPS_MODE = "flops" |
|
ACTIVATIONS_MODE = "activations" |
|
|
|
|
|
|
|
_IGNORED_OPS = { |
|
"aten::add", |
|
"aten::add_", |
|
"aten::argmax", |
|
"aten::argsort", |
|
"aten::batch_norm", |
|
"aten::constant_pad_nd", |
|
"aten::div", |
|
"aten::div_", |
|
"aten::exp", |
|
"aten::log2", |
|
"aten::max_pool2d", |
|
"aten::meshgrid", |
|
"aten::mul", |
|
"aten::mul_", |
|
"aten::neg", |
|
"aten::nonzero_numpy", |
|
"aten::reciprocal", |
|
"aten::repeat_interleave", |
|
"aten::rsub", |
|
"aten::sigmoid", |
|
"aten::sigmoid_", |
|
"aten::softmax", |
|
"aten::sort", |
|
"aten::sqrt", |
|
"aten::sub", |
|
"torchvision::nms", |
|
} |
|
|
|
|
|
class FlopCountAnalysis(fvcore.nn.FlopCountAnalysis): |
|
""" |
|
Same as :class:`fvcore.nn.FlopCountAnalysis`, but supports detectron2 models. |
|
""" |
|
|
|
def __init__(self, model, inputs): |
|
""" |
|
Args: |
|
model (nn.Module): |
|
inputs (Any): inputs of the given model. Does not have to be tuple of tensors. |
|
""" |
|
wrapper = TracingAdapter(model, inputs, allow_non_tensor=True) |
|
super().__init__(wrapper, wrapper.flattened_inputs) |
|
self.set_op_handle(**{k: None for k in _IGNORED_OPS}) |
|
|
|
|
|
def flop_count_operators(model: nn.Module, inputs: list) -> typing.DefaultDict[str, float]: |
|
""" |
|
Implement operator-level flops counting using jit. |
|
This is a wrapper of :func:`fvcore.nn.flop_count` and adds supports for standard |
|
detection models in detectron2. |
|
Please use :class:`FlopCountAnalysis` for more advanced functionalities. |
|
|
|
Note: |
|
The function runs the input through the model to compute flops. |
|
The flops of a detection model is often input-dependent, for example, |
|
the flops of box & mask head depends on the number of proposals & |
|
the number of detected objects. |
|
Therefore, the flops counting using a single input may not accurately |
|
reflect the computation cost of a model. It's recommended to average |
|
across a number of inputs. |
|
|
|
Args: |
|
model: a detectron2 model that takes `list[dict]` as input. |
|
inputs (list[dict]): inputs to model, in detectron2's standard format. |
|
Only "image" key will be used. |
|
supported_ops (dict[str, Handle]): see documentation of :func:`fvcore.nn.flop_count` |
|
|
|
Returns: |
|
Counter: Gflop count per operator |
|
""" |
|
old_train = model.training |
|
model.eval() |
|
ret = FlopCountAnalysis(model, inputs).by_operator() |
|
model.train(old_train) |
|
return {k: v / 1e9 for k, v in ret.items()} |
|
|
|
|
|
def activation_count_operators( |
|
model: nn.Module, inputs: list, **kwargs |
|
) -> typing.DefaultDict[str, float]: |
|
""" |
|
Implement operator-level activations counting using jit. |
|
This is a wrapper of fvcore.nn.activation_count, that supports standard detection models |
|
in detectron2. |
|
|
|
Note: |
|
The function runs the input through the model to compute activations. |
|
The activations of a detection model is often input-dependent, for example, |
|
the activations of box & mask head depends on the number of proposals & |
|
the number of detected objects. |
|
|
|
Args: |
|
model: a detectron2 model that takes `list[dict]` as input. |
|
inputs (list[dict]): inputs to model, in detectron2's standard format. |
|
Only "image" key will be used. |
|
|
|
Returns: |
|
Counter: activation count per operator |
|
""" |
|
return _wrapper_count_operators(model=model, inputs=inputs, mode=ACTIVATIONS_MODE, **kwargs) |
|
|
|
|
|
def _wrapper_count_operators( |
|
model: nn.Module, inputs: list, mode: str, **kwargs |
|
) -> typing.DefaultDict[str, float]: |
|
|
|
supported_ops = {k: lambda *args, **kwargs: {} for k in _IGNORED_OPS} |
|
supported_ops.update(kwargs.pop("supported_ops", {})) |
|
kwargs["supported_ops"] = supported_ops |
|
|
|
assert len(inputs) == 1, "Please use batch size=1" |
|
tensor_input = inputs[0]["image"] |
|
inputs = [{"image": tensor_input}] |
|
|
|
old_train = model.training |
|
if isinstance(model, (nn.parallel.distributed.DistributedDataParallel, nn.DataParallel)): |
|
model = model.module |
|
wrapper = TracingAdapter(model, inputs) |
|
wrapper.eval() |
|
if mode == FLOPS_MODE: |
|
ret = flop_count(wrapper, (tensor_input,), **kwargs) |
|
elif mode == ACTIVATIONS_MODE: |
|
ret = activation_count(wrapper, (tensor_input,), **kwargs) |
|
else: |
|
raise NotImplementedError("Count for mode {} is not supported yet.".format(mode)) |
|
|
|
if isinstance(ret, tuple): |
|
ret = ret[0] |
|
model.train(old_train) |
|
return ret |
|
|
|
|
|
def find_unused_parameters(model: nn.Module, inputs: Any) -> List[str]: |
|
""" |
|
Given a model, find parameters that do not contribute |
|
to the loss. |
|
|
|
Args: |
|
model: a model in training mode that returns losses |
|
inputs: argument or a tuple of arguments. Inputs of the model |
|
|
|
Returns: |
|
list[str]: the name of unused parameters |
|
""" |
|
assert model.training |
|
for _, prm in model.named_parameters(): |
|
prm.grad = None |
|
|
|
if isinstance(inputs, tuple): |
|
losses = model(*inputs) |
|
else: |
|
losses = model(inputs) |
|
|
|
if isinstance(losses, dict): |
|
losses = sum(losses.values()) |
|
losses.backward() |
|
|
|
unused: List[str] = [] |
|
for name, prm in model.named_parameters(): |
|
if prm.grad is None: |
|
unused.append(name) |
|
prm.grad = None |
|
return unused |
|
|