Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,26 @@
|
|
1 |
import os
|
2 |
import cv2
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import torch
|
6 |
-
import shutil
|
7 |
-
import argparse
|
8 |
-
import platform
|
9 |
-
import datetime
|
10 |
-
import subprocess
|
11 |
import insightface
|
12 |
import onnxruntime
|
13 |
-
import
|
14 |
-
|
15 |
-
import threading
|
16 |
-
import queue
|
17 |
-
from tqdm import tqdm
|
18 |
-
import concurrent.futures
|
19 |
-
from moviepy.editor import VideoFileClip
|
20 |
-
from PIL import Image
|
21 |
-
import io
|
22 |
|
23 |
from face_swapper import Inswapper, paste_to_whole
|
24 |
-
from face_analyser import
|
25 |
-
from face_parsing import init_parsing_model, get_parsed_mask
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## ------------------------------ USER ARGS ------------------------------
|
30 |
|
@@ -37,44 +33,6 @@ parser.add_argument(
|
|
37 |
)
|
38 |
user_args = parser.parse_args()
|
39 |
|
40 |
-
## ------------------------------ DEFAULTS ------------------------------
|
41 |
-
|
42 |
-
USE_COLAB = user_args.colab
|
43 |
-
USE_CUDA = user_args.cuda
|
44 |
-
DEF_OUTPUT_PATH = user_args.out_dir
|
45 |
-
BATCH_SIZE = int(user_args.batch_size)
|
46 |
-
WORKSPACE = None
|
47 |
-
OUTPUT_FILE = None
|
48 |
-
CURRENT_FRAME = None
|
49 |
-
STREAMER = None
|
50 |
-
DETECT_CONDITION = "best detection"
|
51 |
-
DETECT_SIZE = 640
|
52 |
-
DETECT_THRESH = 0.6
|
53 |
-
NUM_OF_SRC_SPECIFIC = 10
|
54 |
-
MASK_INCLUDE = [
|
55 |
-
"Skin",
|
56 |
-
"R-Eyebrow",
|
57 |
-
"L-Eyebrow",
|
58 |
-
"L-Eye",
|
59 |
-
"R-Eye",
|
60 |
-
"Nose",
|
61 |
-
"Mouth",
|
62 |
-
"L-Lip",
|
63 |
-
"U-Lip"
|
64 |
-
]
|
65 |
-
MASK_SOFT_KERNEL = 17
|
66 |
-
MASK_SOFT_ITERATIONS = 10
|
67 |
-
MASK_BLUR_AMOUNT = 0.1
|
68 |
-
MASK_ERODE_AMOUNT = 0.15
|
69 |
-
|
70 |
-
FACE_SWAPPER = None
|
71 |
-
FACE_ANALYSER = None
|
72 |
-
FACE_ENHANCER = None
|
73 |
-
FACE_PARSER = None
|
74 |
-
FACE_ENHANCER_LIST = ["NONE"]
|
75 |
-
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
|
76 |
-
FACE_ENHANCER_LIST.extend(cv2_interpolations)
|
77 |
-
|
78 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
79 |
# Note: Non CUDA users may change settings here
|
80 |
|
@@ -95,8 +53,8 @@ else:
|
|
95 |
device = "cuda" if USE_CUDA else "cpu"
|
96 |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
97 |
|
98 |
-
## ------------------------------ LOAD MODELS ------------------------------
|
99 |
|
|
|
100 |
def load_face_analyser_model(name="buffalo_l"):
|
101 |
global FACE_ANALYSER
|
102 |
if FACE_ANALYSER is None:
|
@@ -105,396 +63,80 @@ def load_face_analyser_model(name="buffalo_l"):
|
|
105 |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
106 |
)
|
107 |
|
108 |
-
|
109 |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
110 |
global FACE_SWAPPER
|
111 |
if FACE_SWAPPER is None:
|
112 |
-
|
113 |
-
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
|
114 |
-
|
115 |
|
116 |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
117 |
global FACE_PARSER
|
118 |
if FACE_PARSER is None:
|
119 |
-
FACE_PARSER = init_parsing_model(path, device=
|
120 |
-
|
121 |
|
|
|
122 |
load_face_analyser_model()
|
123 |
load_face_swapper_model()
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
enable_laplacian_blend,
|
149 |
-
crop_top,
|
150 |
-
crop_bott,
|
151 |
-
crop_left,
|
152 |
-
crop_right,
|
153 |
-
*specifics,
|
154 |
-
):
|
155 |
-
global WORKSPACE
|
156 |
-
global OUTPUT_FILE
|
157 |
-
global PREVIEW
|
158 |
-
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
|
159 |
-
|
160 |
-
## ------------------------------ GUI UPDATE FUNC ------------------------------
|
161 |
-
|
162 |
-
def ui_before():
|
163 |
-
return (
|
164 |
-
gr.update(visible=True, value=PREVIEW),
|
165 |
-
gr.update(interactive=False),
|
166 |
-
gr.update(interactive=False),
|
167 |
-
gr.update(visible=False),
|
168 |
-
)
|
169 |
-
|
170 |
-
def ui_after():
|
171 |
-
return (
|
172 |
-
gr.update(visible=True, value=PREVIEW),
|
173 |
-
gr.update(interactive=True),
|
174 |
-
gr.update(interactive=True),
|
175 |
-
gr.update(visible=False),
|
176 |
-
)
|
177 |
-
|
178 |
-
def ui_after_vid():
|
179 |
-
return (
|
180 |
-
gr.update(visible=False),
|
181 |
-
gr.update(interactive=True),
|
182 |
-
gr.update(interactive=True),
|
183 |
-
gr.update(value=OUTPUT_FILE, visible=True),
|
184 |
-
)
|
185 |
-
|
186 |
-
start_time = time.time()
|
187 |
-
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
|
188 |
-
|
189 |
-
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
|
190 |
-
|
191 |
-
load_face_analyser_model()
|
192 |
-
load_face_swapper_model()
|
193 |
-
|
194 |
-
if face_enhancer_name != "NONE":
|
195 |
-
if face_enhancer_name not in cv2_interpolations:
|
196 |
-
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
|
197 |
-
else:
|
198 |
-
FACE_ENHANCER = None
|
199 |
-
|
200 |
-
if enable_face_parser:
|
201 |
-
load_face_parser_model()
|
202 |
-
|
203 |
-
includes = mask_regions_to_list(mask_includes)
|
204 |
-
specifics = list(specifics)
|
205 |
-
half = len(specifics) // 2
|
206 |
-
sources = specifics[:half]
|
207 |
-
specifics = specifics[half:]
|
208 |
-
if crop_top > crop_bott:
|
209 |
-
crop_top, crop_bott = crop_bott, crop_top
|
210 |
-
if crop_left > crop_right:
|
211 |
-
crop_left, crop_right = crop_right, crop_left
|
212 |
-
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
|
213 |
-
|
214 |
-
def swap_process(image_sequence):
|
215 |
-
## ------------------------------ CONTENT CHECK ------------------------------
|
216 |
-
|
217 |
-
if condition != "Specific Face":
|
218 |
-
source_data = source_path, age
|
219 |
-
else:
|
220 |
-
source_data = ((sources, specifics), distance)
|
221 |
-
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
|
222 |
-
FACE_ANALYSER,
|
223 |
-
image_sequence,
|
224 |
-
source_data,
|
225 |
-
swap_condition=condition,
|
226 |
-
detect_condition=DETECT_CONDITION,
|
227 |
-
scale=face_scale
|
228 |
-
)
|
229 |
-
|
230 |
-
## ------------------------------ SWAP FUNC ------------------------------
|
231 |
-
preds = []
|
232 |
-
matrs = []
|
233 |
-
count = 0
|
234 |
-
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
|
235 |
-
preds.extend(batch_pred)
|
236 |
-
matrs.extend(batch_matr)
|
237 |
-
EMPTY_CACHE()
|
238 |
-
count += 1
|
239 |
-
|
240 |
-
if USE_CUDA:
|
241 |
-
image_grid = create_image_grid(batch_pred, size=128)
|
242 |
-
|
243 |
-
## ------------------------------ FACE ENHANCEMENT ------------------------------
|
244 |
-
|
245 |
-
generated_len = len(preds)
|
246 |
-
if face_enhancer_name != "NONE":
|
247 |
-
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
|
248 |
-
enhancer_model, enhancer_model_runner = FACE_ENHANCER
|
249 |
-
pred = enhancer_model_runner(pred, enhancer_model)
|
250 |
-
preds[idx] = cv2.resize(pred, (512,512))
|
251 |
-
EMPTY_CACHE()
|
252 |
-
|
253 |
-
## ------------------------------ FACE PARSING ------------------------------
|
254 |
-
|
255 |
-
if enable_face_parser:
|
256 |
-
masks = []
|
257 |
-
count = 0
|
258 |
-
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
|
259 |
-
masks.append(batch_mask)
|
260 |
-
EMPTY_CACHE()
|
261 |
-
count += 1
|
262 |
-
|
263 |
-
if len(batch_mask) > 1:
|
264 |
-
image_grid = create_image_grid(batch_mask, size=128)
|
265 |
-
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
|
266 |
-
else:
|
267 |
-
masks = [None] * generated_len
|
268 |
-
|
269 |
-
## ------------------------------ SPLIT LIST ------------------------------
|
270 |
-
|
271 |
-
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
|
272 |
-
del preds
|
273 |
-
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
|
274 |
-
del matrs
|
275 |
-
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
|
276 |
-
del masks
|
277 |
-
|
278 |
-
## ------------------------------ PASTE-BACK ------------------------------
|
279 |
-
|
280 |
-
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
|
281 |
-
whole_img_path = frame_img
|
282 |
-
whole_img = cv2.imread(whole_img_path)
|
283 |
-
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
|
284 |
-
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
|
285 |
-
p = cv2.resize(p, (512,512))
|
286 |
-
mask = cv2.resize(mask, (512,512)) if mask is not None else None
|
287 |
-
m /= 0.25
|
288 |
-
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
|
289 |
-
cv2.imwrite(whole_img_path, whole_img)
|
290 |
-
|
291 |
-
def concurrent_post_process(image_sequence, *args):
|
292 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
293 |
-
futures = []
|
294 |
-
for idx, frame_img in enumerate(image_sequence):
|
295 |
-
future = executor.submit(post_process, idx, frame_img, *args)
|
296 |
-
futures.append(future)
|
297 |
-
|
298 |
-
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
|
299 |
-
result = future.result()
|
300 |
-
|
301 |
-
concurrent_post_process(
|
302 |
-
image_sequence,
|
303 |
-
split_preds,
|
304 |
-
split_matrs,
|
305 |
-
split_masks,
|
306 |
-
enable_laplacian_blend,
|
307 |
-
crop_mask,
|
308 |
-
blur_amount,
|
309 |
-
erode_amount
|
310 |
-
)
|
311 |
-
## ------------------------------ Gardio API ------------------------------
|
312 |
-
iface = gr.Interface(
|
313 |
-
fn=process_api,
|
314 |
-
inputs=[
|
315 |
-
gr.Textbox(label="Source Image (base64)"),
|
316 |
-
gr.Textbox(label="Target Image (base64)")
|
317 |
-
],
|
318 |
-
outputs=gr.Textbox(label="Result Image (base64)"),
|
319 |
-
title="Face Swap API",
|
320 |
-
description="Submit two base64 encoded images to swap faces."
|
321 |
-
)
|
322 |
-
## ------------------------------ IMAGE ------------------------------
|
323 |
-
|
324 |
-
if input_type == "Image":
|
325 |
-
target = cv2.imread(image_path)
|
326 |
-
output_file = os.path.join(output_path, output_name + ".png")
|
327 |
-
cv2.imwrite(output_file, target)
|
328 |
-
|
329 |
-
for info_update in swap_process([output_file]):
|
330 |
-
yield info_update
|
331 |
-
|
332 |
-
OUTPUT_FILE = output_file
|
333 |
-
WORKSPACE = output_path
|
334 |
-
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
|
335 |
-
|
336 |
-
yield get_finsh_text(start_time), *ui_after()
|
337 |
-
|
338 |
-
## ------------------------------ VIDEO ------------------------------
|
339 |
-
|
340 |
-
elif input_type == "Video":
|
341 |
-
temp_path = os.path.join(output_path, output_name, "sequence")
|
342 |
-
os.makedirs(temp_path, exist_ok=True)
|
343 |
-
|
344 |
-
yield "### \n 💽 Extracting video frames...", *ui_before()
|
345 |
-
image_sequence = []
|
346 |
-
cap = cv2.VideoCapture(video_path)
|
347 |
-
curr_idx = 0
|
348 |
-
while True:
|
349 |
-
ret, frame = cap.read()
|
350 |
-
if not ret:break
|
351 |
-
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
|
352 |
-
cv2.imwrite(frame_path, frame)
|
353 |
-
image_sequence.append(frame_path)
|
354 |
-
curr_idx += 1
|
355 |
-
cap.release()
|
356 |
-
cv2.destroyAllWindows()
|
357 |
-
|
358 |
-
for info_update in swap_process(image_sequence):
|
359 |
-
yield info_update
|
360 |
-
|
361 |
-
yield "### \n 🔗 Merging sequence...", *ui_before()
|
362 |
-
output_video_path = os.path.join(output_path, output_name + ".mp4")
|
363 |
-
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
|
364 |
-
|
365 |
-
if os.path.exists(temp_path) and not keep_output_sequence:
|
366 |
-
yield "### \n 🚽 Removing temporary files...", *ui_before()
|
367 |
-
shutil.rmtree(temp_path)
|
368 |
-
|
369 |
-
WORKSPACE = output_path
|
370 |
-
OUTPUT_FILE = output_video_path
|
371 |
-
|
372 |
-
yield get_finsh_text(start_time), *ui_after_vid()
|
373 |
-
|
374 |
-
## ------------------------------ DIRECTORY ------------------------------
|
375 |
-
|
376 |
-
elif input_type == "Directory":
|
377 |
-
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
|
378 |
-
temp_path = os.path.join(output_path, output_name)
|
379 |
-
if os.path.exists(temp_path):
|
380 |
-
shutil.rmtree(temp_path)
|
381 |
-
os.mkdir(temp_path)
|
382 |
-
|
383 |
-
file_paths =[]
|
384 |
-
for file_path in glob.glob(os.path.join(directory_path, "*")):
|
385 |
-
if any(file_path.lower().endswith(ext) for ext in extensions):
|
386 |
-
img = cv2.imread(file_path)
|
387 |
-
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
|
388 |
-
cv2.imwrite(new_file_path, img)
|
389 |
-
file_paths.append(new_file_path)
|
390 |
-
|
391 |
-
for info_update in swap_process(file_paths):
|
392 |
-
yield info_update
|
393 |
-
|
394 |
-
WORKSPACE = temp_path
|
395 |
-
OUTPUT_FILE = file_paths[-1]
|
396 |
-
|
397 |
-
## ------------------------------ STREAM ------------------------------
|
398 |
-
|
399 |
-
elif input_type == "Stream":
|
400 |
-
pass
|
401 |
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
-
|
|
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
global DETECT_CONDITION
|
408 |
-
DETECT_CONDITION = detect_condition
|
409 |
-
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
|
410 |
-
FACE_ANALYSER.prepare(
|
411 |
-
ctx_id=0,
|
412 |
-
det_size=(int(detection_size), int(detection_size)),
|
413 |
-
det_thresh=float(detection_threshold),
|
414 |
-
)
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
img = Image.open(io.BytesIO(img_data))
|
419 |
-
return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
420 |
|
421 |
-
def process_api(source_base64, target_base64):
|
422 |
-
source_image = decode_base64_image(source_base64)
|
423 |
-
target_image = decode_base64_image(target_base64)
|
424 |
-
|
425 |
-
temp_source_path = "temp_source.jpg"
|
426 |
-
temp_target_path = "temp_target.jpg"
|
427 |
-
cv2.imwrite(temp_source_path, source_image)
|
428 |
-
cv2.imwrite(temp_target_path, target_image)
|
429 |
-
|
430 |
-
result = process(
|
431 |
-
input_type="Image",
|
432 |
-
image_path=temp_target_path,
|
433 |
-
video_path=None,
|
434 |
-
directory_path=None,
|
435 |
-
source_path=temp_source_path,
|
436 |
-
output_path="output",
|
437 |
-
output_name="result",
|
438 |
-
keep_output_sequence=False,
|
439 |
-
condition="First found face",
|
440 |
-
age=None,
|
441 |
-
distance=None,
|
442 |
-
face_enhancer_name="NONE",
|
443 |
-
enable_face_parser=False,
|
444 |
-
mask_includes=MASK_INCLUDE,
|
445 |
-
mask_soft_kernel=MASK_SOFT_KERNEL,
|
446 |
-
mask_soft_iterations=MASK_SOFT_ITERATIONS,
|
447 |
-
blur_amount=MASK_BLUR_AMOUNT,
|
448 |
-
erode_amount=MASK_ERODE_AMOUNT,
|
449 |
-
face_scale=1.0,
|
450 |
-
enable_laplacian_blend=True,
|
451 |
-
crop_top,
|
452 |
-
crop_bott,
|
453 |
-
crop_left,
|
454 |
-
crop_right,
|
455 |
-
)
|
456 |
-
|
457 |
-
os.remove(temp_source_path)
|
458 |
-
os.remove(temp_target_path)
|
459 |
-
|
460 |
-
result_image = cv2.imread("output/result.png")
|
461 |
-
_, buffer = cv2.imencode('.jpg', result_image)
|
462 |
-
result_base64 = base64.b64encode(buffer).decode('utf-8')
|
463 |
-
|
464 |
return result_base64
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
if hasattr(STREAMER, "stop"):
|
469 |
-
STREAMER.stop()
|
470 |
-
STREAMER = None
|
471 |
-
return "Cancelled"
|
472 |
-
|
473 |
-
|
474 |
-
def slider_changed(show_frame, video_path, frame_index):
|
475 |
-
if not show_frame:
|
476 |
-
return None, None
|
477 |
-
if video_path is None:
|
478 |
-
return None, None
|
479 |
-
clip = VideoFileClip(video_path)
|
480 |
-
frame = clip.get_frame(frame_index / clip.fps)
|
481 |
-
frame_array = np.array(frame)
|
482 |
-
clip.close()
|
483 |
-
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
|
484 |
-
visible=False
|
485 |
-
)
|
486 |
|
|
|
|
|
|
|
|
|
487 |
|
488 |
-
|
|
|
489 |
try:
|
490 |
-
|
491 |
-
|
492 |
except Exception as e:
|
493 |
-
|
494 |
-
|
495 |
|
|
|
496 |
if __name__ == "__main__":
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
iface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)
|
|
|
1 |
import os
|
2 |
import cv2
|
3 |
+
import base64
|
4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import insightface
|
6 |
import onnxruntime
|
7 |
+
from fastapi import FastAPI, HTTPException
|
8 |
+
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
from face_swapper import Inswapper, paste_to_whole
|
11 |
+
from face_analyser import get_analysed_data
|
12 |
+
from face_parsing import init_parsing_model, get_parsed_mask
|
13 |
+
|
14 |
+
|
15 |
+
# Глобальные константы и переменные
|
16 |
+
USE_COLAB = user_args.colab
|
17 |
+
USE_CUDA = user_args.cuda
|
18 |
+
PROVIDER = ["CPUExecutionProvider"]
|
19 |
+
DETECT_SIZE = 640
|
20 |
+
DETECT_THRESH = 0.6
|
21 |
+
FACE_ANALYSER = None
|
22 |
+
FACE_SWAPPER = None
|
23 |
+
FACE_PARSER = None
|
24 |
|
25 |
## ------------------------------ USER ARGS ------------------------------
|
26 |
|
|
|
33 |
)
|
34 |
user_args = parser.parse_args()
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
|
37 |
# Note: Non CUDA users may change settings here
|
38 |
|
|
|
53 |
device = "cuda" if USE_CUDA else "cpu"
|
54 |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
|
55 |
|
|
|
56 |
|
57 |
+
# Функции загрузки моделей
|
58 |
def load_face_analyser_model(name="buffalo_l"):
|
59 |
global FACE_ANALYSER
|
60 |
if FACE_ANALYSER is None:
|
|
|
63 |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
|
64 |
)
|
65 |
|
|
|
66 |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
|
67 |
global FACE_SWAPPER
|
68 |
if FACE_SWAPPER is None:
|
69 |
+
FACE_SWAPPER = Inswapper(model_file=path, batch_size=1, providers=PROVIDER)
|
|
|
|
|
70 |
|
71 |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
|
72 |
global FACE_PARSER
|
73 |
if FACE_PARSER is None:
|
74 |
+
FACE_PARSER = init_parsing_model(path, device='cpu')
|
|
|
75 |
|
76 |
+
# Загрузка всех моделей
|
77 |
load_face_analyser_model()
|
78 |
load_face_swapper_model()
|
79 |
+
load_face_parser_model()
|
80 |
|
81 |
+
def base64_to_image(base64_string):
|
82 |
+
img_data = base64.b64decode(base64_string)
|
83 |
+
nparr = np.frombuffer(img_data, np.uint8)
|
84 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
85 |
+
return img
|
86 |
+
|
87 |
+
def image_to_base64(image):
|
88 |
+
_, buffer = cv2.imencode('.png', image)
|
89 |
+
return base64.b64encode(buffer).decode('utf-8')
|
90 |
+
|
91 |
+
def process_images(source_img_base64, target_img_base64):
|
92 |
+
# Декодирование base64 в изображения
|
93 |
+
source_img = base64_to_image(source_img_base64)
|
94 |
+
target_img = base64_to_image(target_img_base64)
|
95 |
+
|
96 |
+
# Анализ лиц
|
97 |
+
analysed_targets, analysed_sources, _, _ = get_analysed_data(
|
98 |
+
FACE_ANALYSER,
|
99 |
+
[target_img],
|
100 |
+
source_img,
|
101 |
+
swap_condition="First",
|
102 |
+
detect_condition="best detection"
|
103 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
# Замена лица
|
106 |
+
preds = []
|
107 |
+
matrs = []
|
108 |
+
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward([target_img], analysed_targets, analysed_sources):
|
109 |
+
preds.extend(batch_pred)
|
110 |
+
matrs.extend(batch_matr)
|
111 |
|
112 |
+
# Парсинг лица и создание маски
|
113 |
+
masks = get_parsed_mask(FACE_PARSER, preds, classes=["skin", "l_brow", "r_brow", "l_eye", "r_eye", "nose", "u_lip", "l_lip", "mouth"], device='cpu')
|
114 |
|
115 |
+
# Наложение результата обратно на изображение
|
116 |
+
result_img = paste_to_whole(preds[0], target_img, matrs[0], mask=masks[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Кодирование результата в base64
|
119 |
+
result_base64 = image_to_base64(result_img)
|
|
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
return result_base64
|
122 |
|
123 |
+
# Создание FastAPI приложения
|
124 |
+
app = FastAPI(title="Faceswap API", description="API для замены лица. Отправьте два изображения в формате base64.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
+
# Определение модели запроса
|
127 |
+
class SwapRequest(BaseModel):
|
128 |
+
source_img: str
|
129 |
+
target_img: str
|
130 |
|
131 |
+
@app.post("/swap_face")
|
132 |
+
async def swap_face(request: SwapRequest):
|
133 |
try:
|
134 |
+
result = process_images(request.source_img, request.target_img)
|
135 |
+
return {"result": result}
|
136 |
except Exception as e:
|
137 |
+
raise HTTPException(status_code=400, detail=str(e))
|
|
|
138 |
|
139 |
+
# Запуск сервера
|
140 |
if __name__ == "__main__":
|
141 |
+
import uvicorn
|
142 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|