ArturG9 commited on
Commit
601e853
1 Parent(s): 6348c4d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -38
app.py CHANGED
@@ -100,32 +100,8 @@ def get_conversation_chain():
100
 
101
 
102
  return rag_chain
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
- def main():
115
- st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
116
- st.write(css, unsafe_allow_html=True)
117
-
118
- st.header("Chat with multiple PDFs :books:")
119
-
120
- vectorstore = None
121
- conversation = None
122
-
123
-
124
- if user_question := st.text_input("Ask a question about your documents:"):
125
- handle_userinput(user_question, vectorstore, conversation)
126
-
127
-
128
 
 
129
  with st.sidebar:
130
  st.subheader("Your documents")
131
  pdf_docs = st.file_uploader("For Chatbot to get alive, upload your PDFs here and click on 'Process'", accept_multiple_files=True)
@@ -138,18 +114,42 @@ def main():
138
  # get pdf text
139
  raw_text = get_pdf_text(pdf_docs)
140
 
141
- # get the text chunks
142
  text_chunks = get_text_chunks(raw_text)
143
 
144
  # create vector store
145
  vectorstore = get_vectorstore(text_chunks)
146
 
147
- # create conversation chain
148
  conversation = get_conversation_chain()
149
 
150
  st.success("Files have been processed into a vector store.")
151
 
152
- return vectorstore , conversation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
 
154
 
155
 
@@ -176,11 +176,8 @@ def handle_userinput(user_question,vectorstore,conversation ):
176
 
177
  retriever = vectorstore.as_retriever(search_type = 'mmr', search_kwargs={"k": 7})
178
  docs = retriever.invoke(user_question)
179
- with st.sidebar:
180
- st.subheader("Your documents")
181
- with st.spinner("Processing"):
182
- for doc in docs:
183
- st.write(f"Document: {doc}")
184
 
185
  doc_txt = [doc.page_content for doc in docs]
186
 
@@ -196,11 +193,10 @@ def handle_userinput(user_question,vectorstore,conversation ):
196
  st.write(bot_template.replace(
197
  "{{MSG}}", message['content']), unsafe_allow_html=True)
198
 
199
- # if 'source_documents' in response:
200
- # st.subheader("Retrieved Documents")
201
- # for doc in response['source_documents']:
202
- # st.write(f"Document: {doc.metadata['source']}")
203
- # st.write(doc.page_content)
204
 
205
 
206
 
 
100
 
101
 
102
  return rag_chain
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ def sidebar():
105
  with st.sidebar:
106
  st.subheader("Your documents")
107
  pdf_docs = st.file_uploader("For Chatbot to get alive, upload your PDFs here and click on 'Process'", accept_multiple_files=True)
 
114
  # get pdf text
115
  raw_text = get_pdf_text(pdf_docs)
116
 
117
+
118
  text_chunks = get_text_chunks(raw_text)
119
 
120
  # create vector store
121
  vectorstore = get_vectorstore(text_chunks)
122
 
123
+
124
  conversation = get_conversation_chain()
125
 
126
  st.success("Files have been processed into a vector store.")
127
 
128
+ return vectorstore , conversation
129
+
130
+
131
+
132
+
133
+
134
+
135
+
136
+
137
+
138
+
139
+
140
+ def main():
141
+ st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:")
142
+ st.write(css, unsafe_allow_html=True)
143
+
144
+ st.header("Chat with multiple PDFs :books:")
145
+
146
+ vectorstore , conversation = sidebar()
147
+
148
+
149
+ if user_question := st.text_input("Ask a question about your documents:"):
150
+ handle_userinput(user_question, vectorstore, conversation)
151
+
152
+
153
 
154
 
155
 
 
176
 
177
  retriever = vectorstore.as_retriever(search_type = 'mmr', search_kwargs={"k": 7})
178
  docs = retriever.invoke(user_question)
179
+
180
+
 
 
 
181
 
182
  doc_txt = [doc.page_content for doc in docs]
183
 
 
193
  st.write(bot_template.replace(
194
  "{{MSG}}", message['content']), unsafe_allow_html=True)
195
 
196
+ st.subheader("Your documents")
197
+
198
+ for doc in docs:
199
+ st.write(f"Document: {doc}")
 
200
 
201
 
202