Arts-of-coding commited on
Commit
ed963d2
·
verified ·
1 Parent(s): 416a0e7

Update dash_plotly_QC_scRNA.py

Browse files
Files changed (1) hide show
  1. dash_plotly_QC_scRNA.py +422 -422
dash_plotly_QC_scRNA.py CHANGED
@@ -1,422 +1,422 @@
1
- # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
- # Shoutout to Coding-with-Adam for the initial template of the project:
3
- # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
-
5
- import dash
6
- from dash import dcc, html, Output, Input
7
- import plotly.express as px
8
- import dash_callback_chain
9
- import yaml
10
- import polars as pl
11
- pl.enable_string_cache(False)
12
-
13
- # Set custom resolution for plots:
14
- config_fig = {
15
- 'toImageButtonOptions': {
16
- 'format': 'svg',
17
- 'filename': 'custom_image',
18
- 'height': 600,
19
- 'width': 700,
20
- 'scale': 1,
21
- }
22
- }
23
-
24
- config_path = "./app/azure/config.yaml"
25
-
26
- # Add the read-in data from the yaml file
27
- def read_config(filename):
28
- with open(filename, 'r') as yaml_file:
29
- config = yaml.safe_load(yaml_file)
30
- return config
31
-
32
- config = read_config(config_path)
33
- path_parquet = config.get("path_parquet")
34
- conditions = config.get("conditions")
35
- col_features = config.get("col_features")
36
- col_counts = config.get("col_counts")
37
- col_mt = config.get("col_mt")
38
-
39
- # Import the data from one .parquet file
40
- df = pl.read_parquet(path_parquet)
41
- #df = df.rename({"__index_level_0__": "Unnamed: 0"})
42
-
43
- # Setup the app
44
- external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
45
- app = dash.Dash(__name__, external_stylesheets=external_stylesheets, requests_pathname_prefix='/dashboard1/')
46
-
47
- min_value = df[col_features].min()
48
- max_value = df[col_features].max()
49
-
50
- min_value_2 = df[col_counts].min()
51
- min_value_2 = round(min_value_2)
52
- max_value_2 = df[col_counts].max()
53
- max_value_2 = round(max_value_2)
54
-
55
- min_value_3 = df[col_mt].min()
56
- min_value_3 = round(min_value_3, 1)
57
- max_value_3 = df[col_mt].max()
58
- max_value_3 = round(max_value_3, 1)
59
-
60
- # Loads in the conditions specified in the yaml file
61
-
62
- # Note: Future version perhaps all values from a column in the dataframe of the parquet file
63
- # Note 2: This could also be a tsv of the categories and own specified colors
64
-
65
- # Create the first tab content
66
- # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
67
-
68
- tab1_content = html.Div([
69
- dcc.Dropdown(id='dpdn2', value=conditions, multi=True,
70
- options=conditions),
71
- html.Label("N Genes by Counts"),
72
- dcc.RangeSlider(
73
- id='range-slider-1',
74
- step=250,
75
- value=[min_value, max_value],
76
- marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
77
- ),
78
- dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
79
- dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
80
- html.Label("Total Counts"),
81
- dcc.RangeSlider(
82
- id='range-slider-2',
83
- step=7500,
84
- value=[min_value_2, max_value_2],
85
- marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
86
- ),
87
- dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
88
- dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
89
- html.Label("Percent Mitochondrial Genes"),
90
- dcc.RangeSlider(
91
- id='range-slider-3',
92
- step=0.1,
93
- min=0,
94
- max=1,
95
- value=[min_value_3, max_value_3],
96
- ),
97
- dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
98
- dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
99
- html.Div([
100
- dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
101
- dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
102
- className='four columns',config=config_fig
103
- ),
104
- dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
105
- ]),
106
- html.Div([
107
- dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
108
- ]),
109
- html.Div([
110
- dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
111
- ]),
112
- html.Div([
113
- dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
114
- ]),
115
- ])
116
-
117
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
118
- tab2_content = html.Div([
119
- html.Div([
120
- html.Label("S-cycle genes"),
121
- dcc.Dropdown(id='dpdn3', value="Cdc45", multi=False,
122
- options=[
123
- "Cdc45",
124
- "Uhrf1",
125
- "Mcm2",
126
- "Slbp",
127
- "Mcm5",
128
- "Pola1",
129
- "Gmnn",
130
- "Cdc6",
131
- "Rrm2",
132
- "Atad2",
133
- "Dscc1",
134
- "Mcm4",
135
- "Chaf1b",
136
- "Rfc2",
137
- "Msh2",
138
- "Fen1",
139
- "Hells",
140
- "Prim1",
141
- "Tyms",
142
- "Mcm6",
143
- "Wdr76",
144
- "Rad51",
145
- "Pcna",
146
- "Ccne2",
147
- "Casp8ap2",
148
- "Usp1",
149
- "Nasp",
150
- "Rpa2",
151
- "Ung",
152
- "Rad51ap1",
153
- "Blm",
154
- "Pold3",
155
- "Rrm1",
156
- "Cenpu",
157
- "Gins2",
158
- "Tipin",
159
- "Brip1",
160
- "Dtl",
161
- "Exo1",
162
- "Ubr7",
163
- "Clspn",
164
- "E2f8",
165
- "Cdca7"
166
- ]),
167
- html.Label("G2M-cycle genes"),
168
- dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
169
- options=[
170
- "Ube2c",
171
- "Lbr",
172
- "Ctcf",
173
- "Cdc20",
174
- "Cbx5",
175
- "Kif11",
176
- "Anp32e",
177
- "Birc5",
178
- "Cdk1",
179
- "Tmpo",
180
- "Hmmr",
181
- "Pimreg",
182
- "Aurkb",
183
- "Top2a",
184
- "Gtse1",
185
- "Rangap1",
186
- "Cdca3",
187
- "Ndc80",
188
- "Kif20b",
189
- "Cenpf",
190
- "Nek2",
191
- "Nuf2",
192
- "Nusap1",
193
- "Bub1",
194
- "Tpx2",
195
- "Aurka",
196
- "Ect2",
197
- "Cks1b",
198
- "Kif2c",
199
- "Cdca8",
200
- "Cenpa",
201
- "Mki67",
202
- "Ccnb2",
203
- "Kif23",
204
- "Smc4",
205
- "G2e3",
206
- "Tubb4b",
207
- "Anln",
208
- "Tacc3",
209
- "Dlgap5",
210
- "Ckap2",
211
- "Ncapd2",
212
- "Ttk",
213
- "Ckap5",
214
- "Cdc25c",
215
- "Hjurp",
216
- "Cenpe",
217
- "Ckap2l",
218
- "Cdca2",
219
- "Hmgb2",
220
- "Cks2",
221
- "Psrc1",
222
- "Gas2l3"
223
- ]),
224
- ]),
225
- html.Div([
226
- dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
227
- ]),
228
- html.Div([
229
- dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
230
- ]),
231
- html.Div([
232
- dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
233
- ]),
234
- html.Div([
235
- dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
236
- ]),
237
- ])
238
-
239
- # Create the second tab content with scatter-plot-5 and scatter-plot-6
240
- tab3_content = html.Div([
241
- html.Div([
242
- html.Label("UMAP condition 1"),
243
- dcc.Dropdown(id='dpdn5', value="total_counts", multi=False,
244
- options=df.columns),
245
- html.Label("UMAP condition 2"),
246
- dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
247
- options=df.columns),
248
- ]),
249
- html.Div([
250
- dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
251
- ]),
252
- html.Div([
253
- dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
254
- ]),
255
- html.Div([
256
- dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
257
- ]),
258
- html.Div([
259
- dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
260
- className='four columns',config=config_fig
261
- )
262
- ]),
263
- ])
264
-
265
- # Define the tabs layout
266
- app.layout = html.Div([
267
- dcc.Tabs(id='tabs', style= {'width': 400,
268
- 'font-size': '100%',
269
- 'height': 50}, value='tab1',children=[
270
- dcc.Tab(label='QC', value='tab1', children=tab1_content),
271
- dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
272
- dcc.Tab(label='Custom', value='tab3', children=tab3_content),
273
- ]),
274
- ])
275
-
276
- # Define the circular callback
277
- @app.callback(
278
- Output("min-slider-1", "value"),
279
- Output("max-slider-1", "value"),
280
- Output("min-slider-2", "value"),
281
- Output("max-slider-2", "value"),
282
- Output("min-slider-3", "value"),
283
- Output("max-slider-3", "value"),
284
- Input("min-slider-1", "value"),
285
- Input("max-slider-1", "value"),
286
- Input("min-slider-2", "value"),
287
- Input("max-slider-2", "value"),
288
- Input("min-slider-3", "value"),
289
- Input("max-slider-3", "value"),
290
- )
291
- def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
292
- return min_1, max_1, min_2, max_2, min_3, max_3
293
-
294
- @app.callback(
295
- Output('range-slider-1', 'value'),
296
- Output('range-slider-2', 'value'),
297
- Output('range-slider-3', 'value'),
298
- Input('min-slider-1', 'value'),
299
- Input('max-slider-1', 'value'),
300
- Input('min-slider-2', 'value'),
301
- Input('max-slider-2', 'value'),
302
- Input('min-slider-3', 'value'),
303
- Input('max-slider-3', 'value'),
304
- )
305
- def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
306
- return [min_1, max_1], [min_2, max_2], [min_3, max_3]
307
-
308
- @app.callback(
309
- Output(component_id='my-graph', component_property='figure'),
310
- Output(component_id='pie-graph', component_property='figure'),
311
- Output(component_id='scatter-plot', component_property='figure'),
312
- Output(component_id='scatter-plot-2', component_property='figure'),
313
- Output(component_id='scatter-plot-3', component_property='figure'),
314
- Output(component_id='scatter-plot-4', component_property='figure'), # Add this new scatter plot
315
- Output(component_id='scatter-plot-5', component_property='figure'),
316
- Output(component_id='scatter-plot-6', component_property='figure'),
317
- Output(component_id='scatter-plot-7', component_property='figure'),
318
- Output(component_id='scatter-plot-8', component_property='figure'),
319
- Output(component_id='scatter-plot-9', component_property='figure'),
320
- Output(component_id='scatter-plot-10', component_property='figure'),
321
- Output(component_id='scatter-plot-11', component_property='figure'),
322
- Output(component_id='my-graph2', component_property='figure'),
323
- Input(component_id='dpdn2', component_property='value'),
324
- Input(component_id='dpdn3', component_property='value'),
325
- Input(component_id='dpdn4', component_property='value'),
326
- Input(component_id='dpdn5', component_property='value'),
327
- Input(component_id='dpdn6', component_property='value'),
328
- Input(component_id='range-slider-1', component_property='value'),
329
- Input(component_id='range-slider-2', component_property='value'),
330
- Input(component_id='range-slider-3', component_property='value')
331
- )
332
-
333
- def update_graph_and_pie_chart(batch_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, range_value_1, range_value_2, range_value_3):
334
- dff = df.filter(
335
- (pl.col('batch').cast(str).is_in(batch_chosen)) &
336
- (pl.col(col_features) >= range_value_1[0]) &
337
- (pl.col(col_features) <= range_value_1[1]) &
338
- (pl.col(col_counts) >= range_value_2[0]) &
339
- (pl.col(col_counts) <= range_value_2[1]) &
340
- (pl.col(col_mt) >= range_value_3[0]) &
341
- (pl.col(col_mt) <= range_value_3[1])
342
- )
343
-
344
- #Drop categories that are not in the filtered data
345
- dff = dff.with_columns(dff['batch'].cast(str))
346
- dff = dff.with_columns(dff['batch'].cast(pl.Categorical))
347
-
348
- # Plot figures
349
- fig_violin = px.violin(data_frame=dff, x='batch', y=col_features, box=True, points="all",
350
- color='batch', hover_name='batch',template="seaborn")
351
-
352
- # Calculate the percentage of each category (normalized_count) for pie chart
353
- category_counts = dff.group_by("batch").agg(pl.col("batch").count().alias("count"))
354
- total_count = len(dff)
355
- category_counts = category_counts.with_columns((pl.col("count") / total_count * 100).alias("normalized_count"))
356
-
357
- # Display the result
358
- labels = category_counts["batch"].to_list()
359
- values = category_counts["normalized_count"].to_list()
360
-
361
- total_cells = total_count # Calculate total number of cells
362
- pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
363
-
364
- fig_pie = px.pie(names=labels, values=values, title=pie_title,template="seaborn")
365
-
366
- # Create the scatter plots
367
- fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color='batch',
368
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
369
- hover_name='batch',template="seaborn")
370
-
371
- fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
372
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
373
- hover_name='batch',template="seaborn")
374
-
375
- fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
376
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
377
- hover_name='batch',template="seaborn")
378
-
379
-
380
- fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
381
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
382
- hover_name='batch',template="seaborn")
383
-
384
- fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
385
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
386
- hover_name='batch', title="S-cycle gene:",template="seaborn")
387
-
388
- fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
389
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
390
- hover_name='batch', title="G2M-cycle gene:",template="seaborn")
391
-
392
- fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
393
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
394
- hover_name='batch', title="S score:",template="seaborn")
395
-
396
- fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
397
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
398
- hover_name='batch', title="G2M score:",template="seaborn")
399
-
400
- fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
401
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
402
- hover_name='batch',template="seaborn")
403
-
404
- fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
405
- labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
406
- hover_name='batch',template="seaborn")
407
-
408
- fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color='batch',
409
- #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
410
- hover_name='batch',template="seaborn")
411
-
412
- fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
413
- color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
414
-
415
-
416
- return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_violin2
417
-
418
- # Set http://localhost:5000/ in web browser
419
- # Now create your regular FASTAPI application
420
-
421
- if __name__ == '__main__':
422
- app.run_server(debug=True, use_reloader=False) #host='0.0.0.0', #, port=5000
 
1
+ # Dash app to visualize scRNA-seq data quality control metrics from scanpy objects
2
+ # Shoutout to Coding-with-Adam for the initial template of the project:
3
+ # https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py
4
+
5
+ import dash
6
+ from dash import dcc, html, Output, Input
7
+ import plotly.express as px
8
+ import dash_callback_chain
9
+ import yaml
10
+ import polars as pl
11
+ pl.enable_string_cache(False)
12
+
13
+ # Set custom resolution for plots:
14
+ config_fig = {
15
+ 'toImageButtonOptions': {
16
+ 'format': 'svg',
17
+ 'filename': 'custom_image',
18
+ 'height': 600,
19
+ 'width': 700,
20
+ 'scale': 1,
21
+ }
22
+ }
23
+
24
+ config_path = "./azure/config.yaml"
25
+
26
+ # Add the read-in data from the yaml file
27
+ def read_config(filename):
28
+ with open(filename, 'r') as yaml_file:
29
+ config = yaml.safe_load(yaml_file)
30
+ return config
31
+
32
+ config = read_config(config_path)
33
+ path_parquet = config.get("path_parquet")
34
+ conditions = config.get("conditions")
35
+ col_features = config.get("col_features")
36
+ col_counts = config.get("col_counts")
37
+ col_mt = config.get("col_mt")
38
+
39
+ # Import the data from one .parquet file
40
+ df = pl.read_parquet(path_parquet)
41
+ #df = df.rename({"__index_level_0__": "Unnamed: 0"})
42
+
43
+ # Setup the app
44
+ external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
45
+ app = dash.Dash(__name__, external_stylesheets=external_stylesheets, requests_pathname_prefix='/dashboard1/')
46
+
47
+ min_value = df[col_features].min()
48
+ max_value = df[col_features].max()
49
+
50
+ min_value_2 = df[col_counts].min()
51
+ min_value_2 = round(min_value_2)
52
+ max_value_2 = df[col_counts].max()
53
+ max_value_2 = round(max_value_2)
54
+
55
+ min_value_3 = df[col_mt].min()
56
+ min_value_3 = round(min_value_3, 1)
57
+ max_value_3 = df[col_mt].max()
58
+ max_value_3 = round(max_value_3, 1)
59
+
60
+ # Loads in the conditions specified in the yaml file
61
+
62
+ # Note: Future version perhaps all values from a column in the dataframe of the parquet file
63
+ # Note 2: This could also be a tsv of the categories and own specified colors
64
+
65
+ # Create the first tab content
66
+ # Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
67
+
68
+ tab1_content = html.Div([
69
+ dcc.Dropdown(id='dpdn2', value=conditions, multi=True,
70
+ options=conditions),
71
+ html.Label("N Genes by Counts"),
72
+ dcc.RangeSlider(
73
+ id='range-slider-1',
74
+ step=250,
75
+ value=[min_value, max_value],
76
+ marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
77
+ ),
78
+ dcc.Input(id='min-slider-1', type='number', value=min_value, debounce=True),
79
+ dcc.Input(id='max-slider-1', type='number', value=max_value, debounce=True),
80
+ html.Label("Total Counts"),
81
+ dcc.RangeSlider(
82
+ id='range-slider-2',
83
+ step=7500,
84
+ value=[min_value_2, max_value_2],
85
+ marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
86
+ ),
87
+ dcc.Input(id='min-slider-2', type='number', value=min_value_2, debounce=True),
88
+ dcc.Input(id='max-slider-2', type='number', value=max_value_2, debounce=True),
89
+ html.Label("Percent Mitochondrial Genes"),
90
+ dcc.RangeSlider(
91
+ id='range-slider-3',
92
+ step=0.1,
93
+ min=0,
94
+ max=1,
95
+ value=[min_value_3, max_value_3],
96
+ ),
97
+ dcc.Input(id='min-slider-3', type='number', value=min_value_3, debounce=True),
98
+ dcc.Input(id='max-slider-3', type='number', value=max_value_3, debounce=True),
99
+ html.Div([
100
+ dcc.Graph(id='pie-graph', figure={}, className='four columns',config=config_fig),
101
+ dcc.Graph(id='my-graph', figure={}, clickData=None, hoverData=None,
102
+ className='four columns',config=config_fig
103
+ ),
104
+ dcc.Graph(id='scatter-plot', figure={}, className='four columns',config=config_fig)
105
+ ]),
106
+ html.Div([
107
+ dcc.Graph(id='scatter-plot-2', figure={}, className='four columns',config=config_fig)
108
+ ]),
109
+ html.Div([
110
+ dcc.Graph(id='scatter-plot-3', figure={}, className='four columns',config=config_fig)
111
+ ]),
112
+ html.Div([
113
+ dcc.Graph(id='scatter-plot-4', figure={}, className='four columns',config=config_fig)
114
+ ]),
115
+ ])
116
+
117
+ # Create the second tab content with scatter-plot-5 and scatter-plot-6
118
+ tab2_content = html.Div([
119
+ html.Div([
120
+ html.Label("S-cycle genes"),
121
+ dcc.Dropdown(id='dpdn3', value="Cdc45", multi=False,
122
+ options=[
123
+ "Cdc45",
124
+ "Uhrf1",
125
+ "Mcm2",
126
+ "Slbp",
127
+ "Mcm5",
128
+ "Pola1",
129
+ "Gmnn",
130
+ "Cdc6",
131
+ "Rrm2",
132
+ "Atad2",
133
+ "Dscc1",
134
+ "Mcm4",
135
+ "Chaf1b",
136
+ "Rfc2",
137
+ "Msh2",
138
+ "Fen1",
139
+ "Hells",
140
+ "Prim1",
141
+ "Tyms",
142
+ "Mcm6",
143
+ "Wdr76",
144
+ "Rad51",
145
+ "Pcna",
146
+ "Ccne2",
147
+ "Casp8ap2",
148
+ "Usp1",
149
+ "Nasp",
150
+ "Rpa2",
151
+ "Ung",
152
+ "Rad51ap1",
153
+ "Blm",
154
+ "Pold3",
155
+ "Rrm1",
156
+ "Cenpu",
157
+ "Gins2",
158
+ "Tipin",
159
+ "Brip1",
160
+ "Dtl",
161
+ "Exo1",
162
+ "Ubr7",
163
+ "Clspn",
164
+ "E2f8",
165
+ "Cdca7"
166
+ ]),
167
+ html.Label("G2M-cycle genes"),
168
+ dcc.Dropdown(id='dpdn4', value="Top2a", multi=False,
169
+ options=[
170
+ "Ube2c",
171
+ "Lbr",
172
+ "Ctcf",
173
+ "Cdc20",
174
+ "Cbx5",
175
+ "Kif11",
176
+ "Anp32e",
177
+ "Birc5",
178
+ "Cdk1",
179
+ "Tmpo",
180
+ "Hmmr",
181
+ "Pimreg",
182
+ "Aurkb",
183
+ "Top2a",
184
+ "Gtse1",
185
+ "Rangap1",
186
+ "Cdca3",
187
+ "Ndc80",
188
+ "Kif20b",
189
+ "Cenpf",
190
+ "Nek2",
191
+ "Nuf2",
192
+ "Nusap1",
193
+ "Bub1",
194
+ "Tpx2",
195
+ "Aurka",
196
+ "Ect2",
197
+ "Cks1b",
198
+ "Kif2c",
199
+ "Cdca8",
200
+ "Cenpa",
201
+ "Mki67",
202
+ "Ccnb2",
203
+ "Kif23",
204
+ "Smc4",
205
+ "G2e3",
206
+ "Tubb4b",
207
+ "Anln",
208
+ "Tacc3",
209
+ "Dlgap5",
210
+ "Ckap2",
211
+ "Ncapd2",
212
+ "Ttk",
213
+ "Ckap5",
214
+ "Cdc25c",
215
+ "Hjurp",
216
+ "Cenpe",
217
+ "Ckap2l",
218
+ "Cdca2",
219
+ "Hmgb2",
220
+ "Cks2",
221
+ "Psrc1",
222
+ "Gas2l3"
223
+ ]),
224
+ ]),
225
+ html.Div([
226
+ dcc.Graph(id='scatter-plot-5', figure={}, className='three columns',config=config_fig)
227
+ ]),
228
+ html.Div([
229
+ dcc.Graph(id='scatter-plot-6', figure={}, className='three columns',config=config_fig)
230
+ ]),
231
+ html.Div([
232
+ dcc.Graph(id='scatter-plot-7', figure={}, className='three columns',config=config_fig)
233
+ ]),
234
+ html.Div([
235
+ dcc.Graph(id='scatter-plot-8', figure={}, className='three columns',config=config_fig)
236
+ ]),
237
+ ])
238
+
239
+ # Create the second tab content with scatter-plot-5 and scatter-plot-6
240
+ tab3_content = html.Div([
241
+ html.Div([
242
+ html.Label("UMAP condition 1"),
243
+ dcc.Dropdown(id='dpdn5', value="total_counts", multi=False,
244
+ options=df.columns),
245
+ html.Label("UMAP condition 2"),
246
+ dcc.Dropdown(id='dpdn6', value="n_genes_by_counts", multi=False,
247
+ options=df.columns),
248
+ ]),
249
+ html.Div([
250
+ dcc.Graph(id='scatter-plot-9', figure={}, className='four columns',config=config_fig)
251
+ ]),
252
+ html.Div([
253
+ dcc.Graph(id='scatter-plot-10', figure={}, className='four columns',config=config_fig)
254
+ ]),
255
+ html.Div([
256
+ dcc.Graph(id='scatter-plot-11', figure={}, className='four columns',config=config_fig)
257
+ ]),
258
+ html.Div([
259
+ dcc.Graph(id='my-graph2', figure={}, clickData=None, hoverData=None,
260
+ className='four columns',config=config_fig
261
+ )
262
+ ]),
263
+ ])
264
+
265
+ # Define the tabs layout
266
+ app.layout = html.Div([
267
+ dcc.Tabs(id='tabs', style= {'width': 400,
268
+ 'font-size': '100%',
269
+ 'height': 50}, value='tab1',children=[
270
+ dcc.Tab(label='QC', value='tab1', children=tab1_content),
271
+ dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
272
+ dcc.Tab(label='Custom', value='tab3', children=tab3_content),
273
+ ]),
274
+ ])
275
+
276
+ # Define the circular callback
277
+ @app.callback(
278
+ Output("min-slider-1", "value"),
279
+ Output("max-slider-1", "value"),
280
+ Output("min-slider-2", "value"),
281
+ Output("max-slider-2", "value"),
282
+ Output("min-slider-3", "value"),
283
+ Output("max-slider-3", "value"),
284
+ Input("min-slider-1", "value"),
285
+ Input("max-slider-1", "value"),
286
+ Input("min-slider-2", "value"),
287
+ Input("max-slider-2", "value"),
288
+ Input("min-slider-3", "value"),
289
+ Input("max-slider-3", "value"),
290
+ )
291
+ def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
292
+ return min_1, max_1, min_2, max_2, min_3, max_3
293
+
294
+ @app.callback(
295
+ Output('range-slider-1', 'value'),
296
+ Output('range-slider-2', 'value'),
297
+ Output('range-slider-3', 'value'),
298
+ Input('min-slider-1', 'value'),
299
+ Input('max-slider-1', 'value'),
300
+ Input('min-slider-2', 'value'),
301
+ Input('max-slider-2', 'value'),
302
+ Input('min-slider-3', 'value'),
303
+ Input('max-slider-3', 'value'),
304
+ )
305
+ def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
306
+ return [min_1, max_1], [min_2, max_2], [min_3, max_3]
307
+
308
+ @app.callback(
309
+ Output(component_id='my-graph', component_property='figure'),
310
+ Output(component_id='pie-graph', component_property='figure'),
311
+ Output(component_id='scatter-plot', component_property='figure'),
312
+ Output(component_id='scatter-plot-2', component_property='figure'),
313
+ Output(component_id='scatter-plot-3', component_property='figure'),
314
+ Output(component_id='scatter-plot-4', component_property='figure'), # Add this new scatter plot
315
+ Output(component_id='scatter-plot-5', component_property='figure'),
316
+ Output(component_id='scatter-plot-6', component_property='figure'),
317
+ Output(component_id='scatter-plot-7', component_property='figure'),
318
+ Output(component_id='scatter-plot-8', component_property='figure'),
319
+ Output(component_id='scatter-plot-9', component_property='figure'),
320
+ Output(component_id='scatter-plot-10', component_property='figure'),
321
+ Output(component_id='scatter-plot-11', component_property='figure'),
322
+ Output(component_id='my-graph2', component_property='figure'),
323
+ Input(component_id='dpdn2', component_property='value'),
324
+ Input(component_id='dpdn3', component_property='value'),
325
+ Input(component_id='dpdn4', component_property='value'),
326
+ Input(component_id='dpdn5', component_property='value'),
327
+ Input(component_id='dpdn6', component_property='value'),
328
+ Input(component_id='range-slider-1', component_property='value'),
329
+ Input(component_id='range-slider-2', component_property='value'),
330
+ Input(component_id='range-slider-3', component_property='value')
331
+ )
332
+
333
+ def update_graph_and_pie_chart(batch_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, range_value_1, range_value_2, range_value_3):
334
+ dff = df.filter(
335
+ (pl.col('batch').cast(str).is_in(batch_chosen)) &
336
+ (pl.col(col_features) >= range_value_1[0]) &
337
+ (pl.col(col_features) <= range_value_1[1]) &
338
+ (pl.col(col_counts) >= range_value_2[0]) &
339
+ (pl.col(col_counts) <= range_value_2[1]) &
340
+ (pl.col(col_mt) >= range_value_3[0]) &
341
+ (pl.col(col_mt) <= range_value_3[1])
342
+ )
343
+
344
+ #Drop categories that are not in the filtered data
345
+ dff = dff.with_columns(dff['batch'].cast(str))
346
+ dff = dff.with_columns(dff['batch'].cast(pl.Categorical))
347
+
348
+ # Plot figures
349
+ fig_violin = px.violin(data_frame=dff, x='batch', y=col_features, box=True, points="all",
350
+ color='batch', hover_name='batch',template="seaborn")
351
+
352
+ # Calculate the percentage of each category (normalized_count) for pie chart
353
+ category_counts = dff.group_by("batch").agg(pl.col("batch").count().alias("count"))
354
+ total_count = len(dff)
355
+ category_counts = category_counts.with_columns((pl.col("count") / total_count * 100).alias("normalized_count"))
356
+
357
+ # Display the result
358
+ labels = category_counts["batch"].to_list()
359
+ values = category_counts["normalized_count"].to_list()
360
+
361
+ total_cells = total_count # Calculate total number of cells
362
+ pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
363
+
364
+ fig_pie = px.pie(names=labels, values=values, title=pie_title,template="seaborn")
365
+
366
+ # Create the scatter plots
367
+ fig_scatter = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color='batch',
368
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
369
+ hover_name='batch',template="seaborn")
370
+
371
+ fig_scatter_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
372
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
373
+ hover_name='batch',template="seaborn")
374
+
375
+ fig_scatter_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
376
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
377
+ hover_name='batch',template="seaborn")
378
+
379
+
380
+ fig_scatter_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
381
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
382
+ hover_name='batch',template="seaborn")
383
+
384
+ fig_scatter_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
385
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
386
+ hover_name='batch', title="S-cycle gene:",template="seaborn")
387
+
388
+ fig_scatter_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen,
389
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
390
+ hover_name='batch', title="G2M-cycle gene:",template="seaborn")
391
+
392
+ fig_scatter_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score",
393
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
394
+ hover_name='batch', title="S score:",template="seaborn")
395
+
396
+ fig_scatter_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score",
397
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
398
+ hover_name='batch', title="G2M score:",template="seaborn")
399
+
400
+ fig_scatter_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen,
401
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
402
+ hover_name='batch',template="seaborn")
403
+
404
+ fig_scatter_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen,
405
+ labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
406
+ hover_name='batch',template="seaborn")
407
+
408
+ fig_scatter_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color='batch',
409
+ #labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
410
+ hover_name='batch',template="seaborn")
411
+
412
+ fig_violin2 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all",
413
+ color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
414
+
415
+
416
+ return fig_violin, fig_pie, fig_scatter, fig_scatter_2, fig_scatter_3, fig_scatter_4, fig_scatter_5, fig_scatter_6, fig_scatter_7, fig_scatter_8, fig_scatter_9, fig_scatter_10, fig_scatter_11, fig_violin2
417
+
418
+ # Set http://localhost:5000/ in web browser
419
+ # Now create your regular FASTAPI application
420
+
421
+ if __name__ == '__main__':
422
+ app.run_server(debug=True, use_reloader=False) #host='0.0.0.0', #, port=5000