Arts-of-coding
commited on
Update pages/Cornea_v1_integrated_scVI.py
Browse files- pages/Cornea_v1_integrated_scVI.py +144 -141
pages/Cornea_v1_integrated_scVI.py
CHANGED
@@ -86,18 +86,18 @@ df = pl.read_parquet(f"./data/{dataset}.parquet")
|
|
86 |
# return
|
87 |
|
88 |
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
89 |
-
min_value = df[col_features].min()
|
90 |
-
max_value = df[col_features].max()
|
91 |
|
92 |
-
min_value_2 = df[col_counts].min()
|
93 |
-
min_value_2 = round(min_value_2)
|
94 |
-
max_value_2 = df[col_counts].max()
|
95 |
-
max_value_2 = round(max_value_2)
|
96 |
|
97 |
-
min_value_3 = df[col_mt].min()
|
98 |
-
min_value_3 = round(min_value_3, 1)
|
99 |
-
max_value_3 = df[col_mt].max()
|
100 |
-
max_value_3 = round(max_value_3, 1)
|
101 |
|
102 |
# Loads in the conditions specified in the yaml file
|
103 |
|
@@ -107,55 +107,55 @@ max_value_3 = round(max_value_3, 1)
|
|
107 |
# Create the first tab content
|
108 |
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
|
109 |
|
110 |
-
tab1_content = html.Div([
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
])
|
159 |
|
160 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
161 |
tab2_content = html.Div([
|
@@ -259,6 +259,9 @@ tab3_content = html.Div([
|
|
259 |
|
260 |
|
261 |
tab4_content = html.Div([
|
|
|
|
|
|
|
262 |
html.Div([
|
263 |
html.Label("Multi gene"),
|
264 |
dcc.Dropdown(id='dpdn7', value=["PAX6","TP63","S100A9","KRT5","KRT14","KRT10"], multi=True,
|
@@ -276,54 +279,54 @@ layout = html.Div([
|
|
276 |
'font-size': '100%',
|
277 |
'height': 50}, value='tab1',children=[
|
278 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
279 |
-
dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
|
|
280 |
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
|
281 |
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
|
282 |
-
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
|
283 |
]),
|
284 |
])
|
285 |
|
286 |
# Define the circular callback
|
287 |
-
|
288 |
-
Output("min-slider_db2-1", "value"),
|
289 |
-
Output("max-slider_db2-1", "value"),
|
290 |
-
Output("min-slider_db2-2", "value"),
|
291 |
-
Output("max-slider_db2-2", "value"),
|
292 |
-
Output("min-slider_db2-3", "value"),
|
293 |
-
Output("max-slider_db2-3", "value"),
|
294 |
-
Input("min-slider_db2-1", "value"),
|
295 |
-
Input("max-slider_db2-1", "value"),
|
296 |
-
Input("min-slider_db2-2", "value"),
|
297 |
-
Input("max-slider_db2-2", "value"),
|
298 |
-
Input("min-slider_db2-3", "value"),
|
299 |
-
Input("max-slider_db2-3", "value"),
|
300 |
|
301 |
-
)
|
302 |
-
def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
303 |
-
|
304 |
-
|
305 |
-
@callback(
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
|
316 |
-
)
|
317 |
-
def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
318 |
-
|
319 |
|
320 |
@callback(
|
321 |
-
Output(component_id='my-graph_db2', component_property='figure'),
|
322 |
-
Output(component_id='pie-graph_db2', component_property='figure'),
|
323 |
-
Output(component_id='scatter-plot_db2', component_property='figure'),
|
324 |
-
Output(component_id='scatter-plot_db2-2', component_property='figure'),
|
325 |
-
Output(component_id='scatter-plot_db2-3', component_property='figure'),
|
326 |
-
Output(component_id='scatter-plot_db2-4', component_property='figure'), # Add this new scatter plot
|
327 |
Output(component_id='scatter-plot_db2-5', component_property='figure'),
|
328 |
Output(component_id='scatter-plot_db2-6', component_property='figure'),
|
329 |
Output(component_id='scatter-plot_db2-7', component_property='figure'),
|
@@ -339,44 +342,44 @@ def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
|
339 |
Input(component_id='dpdn5', component_property='value'),
|
340 |
Input(component_id='dpdn6', component_property='value'),
|
341 |
Input(component_id='dpdn7', component_property='value'),
|
342 |
-
Input(component_id='range-slider_db2-1', component_property='value'),
|
343 |
-
Input(component_id='range-slider_db2-2', component_property='value'),
|
344 |
-
Input(component_id='range-slider_db2-3', component_property='value'),
|
345 |
|
346 |
)
|
347 |
|
348 |
-
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen
|
349 |
batch_chosen = df[col_chosen].unique().to_list()
|
350 |
dff = df.filter(
|
351 |
-
(pl.col(col_chosen).cast(str).is_in(batch_chosen))
|
352 |
-
(pl.col(col_features) >= range_value_1[0]) &
|
353 |
-
(pl.col(col_features) <= range_value_1[1]) &
|
354 |
-
(pl.col(col_counts) >= range_value_2[0]) &
|
355 |
-
(pl.col(col_counts) <= range_value_2[1]) &
|
356 |
-
(pl.col(col_mt) >= range_value_3[0]) &
|
357 |
-
(pl.col(col_mt) <= range_value_3[1])
|
358 |
)
|
359 |
|
360 |
-
#Drop categories that are not in the filtered data
|
361 |
-
dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
|
362 |
|
363 |
-
dff = dff.sort(col_chosen)
|
364 |
|
365 |
-
# Plot figures
|
366 |
-
fig_violin_db2 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
|
367 |
-
|
368 |
|
369 |
-
# Cache commonly used subexpressions
|
370 |
-
total_count = pl.lit(len(dff))
|
371 |
-
category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
|
372 |
-
category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
|
373 |
|
374 |
-
# Sort the dataframe
|
375 |
-
#category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
|
376 |
|
377 |
-
# Display the result
|
378 |
-
total_cells = total_count # Calculate total number of cells
|
379 |
-
pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
|
380 |
|
381 |
# Calculate the mean expression
|
382 |
|
@@ -416,30 +419,30 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
416 |
expression_means = expression_means.sort(col_chosen, descending=True)
|
417 |
|
418 |
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
419 |
-
category_counts = category_counts.sort(col_chosen)
|
420 |
|
421 |
-
fig_pie_db2 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
|
422 |
|
423 |
-
#labels = category_counts[col_chosen].to_list()
|
424 |
-
#values = category_counts["normalized_count"].to_list()
|
425 |
|
426 |
-
# Create the scatter plots
|
427 |
-
fig_scatter_db2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
|
428 |
-
|
429 |
-
|
430 |
|
431 |
-
fig_scatter_db2_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
432 |
-
|
433 |
-
|
434 |
|
435 |
-
fig_scatter_db2_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
436 |
-
|
437 |
-
|
438 |
|
439 |
|
440 |
-
fig_scatter_db2_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
441 |
-
|
442 |
-
|
443 |
|
444 |
fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
445 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
@@ -481,7 +484,7 @@ def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chos
|
|
481 |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
482 |
|
483 |
|
484 |
-
return
|
485 |
|
486 |
# Set http://localhost:5000/ in web browser
|
487 |
# Now create your regular FASTAPI application
|
|
|
86 |
# return
|
87 |
|
88 |
#df = pl.read_parquet(filepath, storage_options=storage_options)
|
89 |
+
#min_value = df[col_features].min()
|
90 |
+
#max_value = df[col_features].max()
|
91 |
|
92 |
+
#min_value_2 = df[col_counts].min()
|
93 |
+
#min_value_2 = round(min_value_2)
|
94 |
+
#max_value_2 = df[col_counts].max()
|
95 |
+
#max_value_2 = round(max_value_2)
|
96 |
|
97 |
+
#min_value_3 = df[col_mt].min()
|
98 |
+
#min_value_3 = round(min_value_3, 1)
|
99 |
+
#max_value_3 = df[col_mt].max()
|
100 |
+
#max_value_3 = round(max_value_3, 1)
|
101 |
|
102 |
# Loads in the conditions specified in the yaml file
|
103 |
|
|
|
107 |
# Create the first tab content
|
108 |
# Add Sliders for three QC params: N genes by counts, total amount of reads and pct MT reads
|
109 |
|
110 |
+
# tab1_content = html.Div([
|
111 |
+
# html.Label("Column chosen"),
|
112 |
+
# dcc.Dropdown(id='dpdn2', value="batch", multi=False,
|
113 |
+
# options=df.columns),
|
114 |
+
# html.Label("N Genes by Counts"),
|
115 |
+
# dcc.RangeSlider(
|
116 |
+
# id='range-slider_db2-1',
|
117 |
+
# step=250,
|
118 |
+
# value=[min_value, max_value],
|
119 |
+
# marks={i: str(i) for i in range(min_value, max_value + 1, 250)},
|
120 |
+
# ),
|
121 |
+
# dcc.Input(id='min-slider_db2-1', type='number', value=min_value, debounce=True),
|
122 |
+
# dcc.Input(id='max-slider_db2-1', type='number', value=max_value, debounce=True),
|
123 |
+
# html.Label("Total Counts"),
|
124 |
+
# dcc.RangeSlider(
|
125 |
+
# id='range-slider_db2-2',
|
126 |
+
# step=7500,
|
127 |
+
# value=[min_value_2, max_value_2],
|
128 |
+
# marks={i: str(i) for i in range(min_value_2, max_value_2 + 1, 7500)},
|
129 |
+
# ),
|
130 |
+
# dcc.Input(id='min-slider_db2-2', type='number', value=min_value_2, debounce=True),
|
131 |
+
# dcc.Input(id='max-slider_db2-2', type='number', value=max_value_2, debounce=True),
|
132 |
+
# html.Label("Percent Mitochondrial Genes"),
|
133 |
+
# dcc.RangeSlider(
|
134 |
+
# id='range-slider_db2-3',
|
135 |
+
# step=5,
|
136 |
+
# min=0,
|
137 |
+
# max=100,
|
138 |
+
# value=[min_value_3, max_value_3],
|
139 |
+
# ),
|
140 |
+
# dcc.Input(id='min-slider_db2-3', type='number', value=min_value_3, debounce=True),
|
141 |
+
# dcc.Input(id='max-slider_db2-3', type='number', value=max_value_3, debounce=True),
|
142 |
+
# html.Div([
|
143 |
+
# dcc.Graph(id='pie-graph_db2', figure={}, className='four columns',config=config_fig),
|
144 |
+
# dcc.Graph(id='my-graph_db2', figure={}, clickData=None, hoverData=None,
|
145 |
+
# className='four columns',config=config_fig
|
146 |
+
# ),
|
147 |
+
# dcc.Graph(id='scatter-plot_db2', figure={}, className='four columns',config=config_fig)
|
148 |
+
# ]),
|
149 |
+
# html.Div([
|
150 |
+
# dcc.Graph(id='scatter-plot_db2-2', figure={}, className='four columns',config=config_fig)
|
151 |
+
# ]),
|
152 |
+
# html.Div([
|
153 |
+
# dcc.Graph(id='scatter-plot_db2-3', figure={}, className='four columns',config=config_fig)
|
154 |
+
# ]),
|
155 |
+
# html.Div([
|
156 |
+
# dcc.Graph(id='scatter-plot_db2-4', figure={}, className='four columns',config=config_fig)
|
157 |
+
# ]),
|
158 |
+
# ])
|
159 |
|
160 |
# Create the second tab content with scatter-plot_db2-5 and scatter-plot_db2-6
|
161 |
tab2_content = html.Div([
|
|
|
259 |
|
260 |
|
261 |
tab4_content = html.Div([
|
262 |
+
html.Label("Column chosen"),
|
263 |
+
dcc.Dropdown(id='dpdn2', value="batch", multi=False,
|
264 |
+
options=df.columns),
|
265 |
html.Div([
|
266 |
html.Label("Multi gene"),
|
267 |
dcc.Dropdown(id='dpdn7', value=["PAX6","TP63","S100A9","KRT5","KRT14","KRT10"], multi=True,
|
|
|
279 |
'font-size': '100%',
|
280 |
'height': 50}, value='tab1',children=[
|
281 |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content),
|
282 |
+
#dcc.Tab(label='QC', value='tab1', children=tab1_content),
|
283 |
+
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content),
|
284 |
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content),
|
285 |
dcc.Tab(label='Custom', value='tab3', children=tab3_content),
|
|
|
286 |
]),
|
287 |
])
|
288 |
|
289 |
# Define the circular callback
|
290 |
+
#@callback(
|
291 |
+
#Output("min-slider_db2-1", "value"),
|
292 |
+
#Output("max-slider_db2-1", "value"),
|
293 |
+
#Output("min-slider_db2-2", "value"),
|
294 |
+
#Output("max-slider_db2-2", "value"),
|
295 |
+
#Output("min-slider_db2-3", "value"),
|
296 |
+
#Output("max-slider_db2-3", "value"),
|
297 |
+
#Input("min-slider_db2-1", "value"),
|
298 |
+
#Input("max-slider_db2-1", "value"),
|
299 |
+
#Input("min-slider_db2-2", "value"),
|
300 |
+
#Input("max-slider_db2-2", "value"),
|
301 |
+
#Input("min-slider_db2-3", "value"),
|
302 |
+
#Input("max-slider_db2-3", "value"),
|
303 |
|
304 |
+
#)
|
305 |
+
# def circular_callback(min_1, max_1, min_2, max_2, min_3, max_3):
|
306 |
+
# return min_1, max_1, min_2, max_2, min_3, max_3
|
307 |
+
|
308 |
+
# @callback(
|
309 |
+
# Output('range-slider_db2-1', 'value'),
|
310 |
+
# Output('range-slider_db2-2', 'value'),
|
311 |
+
# Output('range-slider_db2-3', 'value'),
|
312 |
+
# Input('min-slider_db2-1', 'value'),
|
313 |
+
# Input('max-slider_db2-1', 'value'),
|
314 |
+
# Input('min-slider_db2-2', 'value'),
|
315 |
+
# Input('max-slider_db2-2', 'value'),
|
316 |
+
# Input('min-slider_db2-3', 'value'),
|
317 |
+
# Input('max-slider_db2-3', 'value'),
|
318 |
|
319 |
+
# )
|
320 |
+
# def update_slider_values(min_1, max_1, min_2, max_2, min_3, max_3):
|
321 |
+
# return [min_1, max_1], [min_2, max_2], [min_3, max_3]
|
322 |
|
323 |
@callback(
|
324 |
+
#Output(component_id='my-graph_db2', component_property='figure'),
|
325 |
+
#Output(component_id='pie-graph_db2', component_property='figure'),
|
326 |
+
#Output(component_id='scatter-plot_db2', component_property='figure'),
|
327 |
+
#Output(component_id='scatter-plot_db2-2', component_property='figure'),
|
328 |
+
#Output(component_id='scatter-plot_db2-3', component_property='figure'),
|
329 |
+
#Output(component_id='scatter-plot_db2-4', component_property='figure'), # Add this new scatter plot
|
330 |
Output(component_id='scatter-plot_db2-5', component_property='figure'),
|
331 |
Output(component_id='scatter-plot_db2-6', component_property='figure'),
|
332 |
Output(component_id='scatter-plot_db2-7', component_property='figure'),
|
|
|
342 |
Input(component_id='dpdn5', component_property='value'),
|
343 |
Input(component_id='dpdn6', component_property='value'),
|
344 |
Input(component_id='dpdn7', component_property='value'),
|
345 |
+
#Input(component_id='range-slider_db2-1', component_property='value'),
|
346 |
+
#Input(component_id='range-slider_db2-2', component_property='value'),
|
347 |
+
#Input(component_id='range-slider_db2-3', component_property='value'),
|
348 |
|
349 |
)
|
350 |
|
351 |
+
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen,
|
352 |
batch_chosen = df[col_chosen].unique().to_list()
|
353 |
dff = df.filter(
|
354 |
+
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #&
|
355 |
+
#(pl.col(col_features) >= range_value_1[0]) &
|
356 |
+
#(pl.col(col_features) <= range_value_1[1]) &
|
357 |
+
#(pl.col(col_counts) >= range_value_2[0]) &
|
358 |
+
#(pl.col(col_counts) <= range_value_2[1]) &
|
359 |
+
#(pl.col(col_mt) >= range_value_3[0]) &
|
360 |
+
#(pl.col(col_mt) <= range_value_3[1])
|
361 |
)
|
362 |
|
363 |
+
# #Drop categories that are not in the filtered data
|
364 |
+
# dff = dff.with_columns(dff[col_chosen].cast(pl.Categorical))
|
365 |
|
366 |
+
# dff = dff.sort(col_chosen)
|
367 |
|
368 |
+
# # Plot figures
|
369 |
+
# fig_violin_db2 = px.violin(data_frame=dff, x=col_chosen, y=col_features, box=True, points="all",
|
370 |
+
# color=col_chosen, hover_name=col_chosen,template="seaborn")
|
371 |
|
372 |
+
# # Cache commonly used subexpressions
|
373 |
+
# total_count = pl.lit(len(dff))
|
374 |
+
# category_counts = dff.group_by(col_chosen).agg(pl.col(col_chosen).count().alias("count"))
|
375 |
+
# category_counts = category_counts.with_columns(((pl.col("count") / total_count * 100).round(decimals=2)).alias("normalized_count"))
|
376 |
|
377 |
+
# # Sort the dataframe
|
378 |
+
# #category_counts = category_counts.sort(col_chosen) does not work check if the names are different ...
|
379 |
|
380 |
+
# # Display the result
|
381 |
+
# total_cells = total_count # Calculate total number of cells
|
382 |
+
# pie_title = f'Percentage of Total Cells: {total_cells}' # Include total cells in the title
|
383 |
|
384 |
# Calculate the mean expression
|
385 |
|
|
|
419 |
expression_means = expression_means.sort(col_chosen, descending=True)
|
420 |
|
421 |
#expression_means = expression_means.select(["batch", "Gene", "Expression"] + condition3_chosen)
|
422 |
+
# category_counts = category_counts.sort(col_chosen)
|
423 |
|
424 |
+
# fig_pie_db2 = px.pie(category_counts, values="normalized_count", names=col_chosen, labels=col_chosen, hole=.3, title=pie_title, template="seaborn")
|
425 |
|
426 |
+
# #labels = category_counts[col_chosen].to_list()
|
427 |
+
# #values = category_counts["normalized_count"].to_list()
|
428 |
|
429 |
+
# # Create the scatter plots
|
430 |
+
# fig_scatter_db2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_chosen,
|
431 |
+
# labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
432 |
+
# hover_name='batch',template="seaborn")
|
433 |
|
434 |
+
# fig_scatter_db2_2 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_mt,
|
435 |
+
# labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
436 |
+
# hover_name='batch',template="seaborn")
|
437 |
|
438 |
+
# fig_scatter_db2_3 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_features,
|
439 |
+
# labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
440 |
+
# hover_name='batch',template="seaborn")
|
441 |
|
442 |
|
443 |
+
# fig_scatter_db2_4 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=col_counts,
|
444 |
+
# labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
445 |
+
# hover_name='batch',template="seaborn")
|
446 |
|
447 |
fig_scatter_db2_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen,
|
448 |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'},
|
|
|
484 |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn")
|
485 |
|
486 |
|
487 |
+
return fig_scatter_db2_5, fig_scatter_db2_6, fig_scatter_db2_7, fig_scatter_db2_8, fig_scatter_db2_9, fig_scatter_db2_10, fig_scatter_db2_11, fig_scatter_db2_12, fig_violin_db22 #fig_violin_db2, fig_pie_db2, fig_scatter_db2, fig_scatter_db2_2, fig_scatter_db2_3, fig_scatter_db2_4,
|
488 |
|
489 |
# Set http://localhost:5000/ in web browser
|
490 |
# Now create your regular FASTAPI application
|