Spaces:
Running
Running
# Dash app to visualize scRNA-seq data quality control metrics from scanpy objects | |
# Shoutout to Coding-with-Adam for the initial template of the project: | |
# https://github.com/Coding-with-Adam/Dash-by-Plotly/blob/master/Dash%20Components/Graph/dash-graph.py | |
import dash | |
from dash import dcc, html, Output, Input, callback | |
import plotly.express as px | |
import dash_callback_chain | |
import yaml | |
import polars as pl | |
import os | |
from natsort import natsorted | |
#pl.enable_string_cache(False) | |
dash.register_page(__name__, location="sidebar") | |
dataset = "data10xflex/corg/WT2_polars" | |
# Set custom resolution for plots: | |
config_fig = { | |
'toImageButtonOptions': { | |
'format': 'svg', | |
'filename': 'custom_image', | |
'height': 600, | |
'width': 700, | |
'scale': 1, | |
} | |
} | |
from adlfs import AzureBlobFileSystem | |
mountpount=os.environ['AZURE_MOUNT_POINT'], | |
AZURE_STORAGE_ACCESS_KEY=os.getenv('AZURE_STORAGE_ACCESS_KEY') | |
AZURE_STORAGE_ACCOUNT=os.getenv('AZURE_STORAGE_ACCOUNT') | |
# Load in config file | |
config_path = "./data/config.yaml" | |
# Add the read-in data from the yaml file | |
def read_config(filename): | |
with open(filename, 'r') as yaml_file: | |
config = yaml.safe_load(yaml_file) | |
return config | |
config = read_config(config_path) | |
path_parquet = config.get("path_parquet") | |
col_batch = config.get("col_batch") | |
col_features = config.get("col_features") | |
col_counts = config.get("col_counts") | |
col_mt = config.get("col_mt") | |
interesting_genes = ["LIN28A", "KRT8", "ABCG2", "S100A9", "COL1A2", "AQP1", "LUM", "TEK", "PAX6", "PMEL"] | |
#filepath = f"az://{path_parquet}" | |
storage_options={'account_name': AZURE_STORAGE_ACCOUNT, 'account_key': AZURE_STORAGE_ACCESS_KEY} #,'anon': False | |
#azfs = AzureBlobFileSystem(**storage_options ) | |
# Load in multiple dataframes | |
df = pl.scan_parquet(f"az://{dataset}.parquet", storage_options=storage_options).collect() | |
# Create the second tab content with scatter-plot_db20-5 and scatter-plot_db20-6 | |
tab2_content = html.Div([ | |
html.Div([ | |
html.Label("S-cycle genes"), | |
dcc.Dropdown(id='dpdn3', value="MCM5", multi=False, | |
options=["MCM5","PCNA","TYMS","FEN1","MCM2","MCM4","RRM1","UNG","GINS2","MCM6","CDCA7","DTL", | |
"PRIM1","UHRF1","HELLS","RFC2","RPA2","NASP","RAD51AP1","GMNN","WDR76","SLBP","CCNE2","UBR7", | |
"POLD3","MSH2","ATAD2","RAD51","RRM2","CDC45","CDC6","EXO1","TIPIN","DSCC1","BLM","CASP8AP2", | |
"USP1","CLSPN","POLA1","CHAF1B","BRIP1","E2F8"]), | |
html.Label("G2M-cycle genes"), | |
dcc.Dropdown(id='dpdn4', value="TOP2A", multi=False, | |
options=["HMGB2","CDK1","NUSAP1","UBE2C","BIRC5","TPX2","TOP2A","NDC80","CKS2","NUF2","CKS1B","MKI67", | |
"TMPO","CENPF","TACC3","SMC4","CCNB2","CKAP2L","CKAP2","AURKB","BUB1","KIF11","ANP32E","TUBB4B", | |
"GTSE1","KIF20B","HJURP","CDCA3","CDC20","TTK","CDC25C","KIF2C","RANGAP1","NCAPD2","DLGAP5","CDCA2", | |
"CDCA8","ECT2","KIF23","HMMR","AURKA","PSRC1","ANLN","LBR","CKAP5","CENPE","CTCF","NEK2","G2E3", | |
"GAS2L3","CBX5","CENPA"]), | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-5', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-6', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-7', figure={}, className='three columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-8', figure={}, className='three columns',config=config_fig) | |
]), | |
]) | |
# Create the second tab content with scatter-plot_db20-5 and scatter-plot_db20-6 | |
tab3_content = html.Div([ | |
html.Div([ | |
html.Label("UMAP condition 1"), | |
dcc.Dropdown(id='dpdn5', value="sample", multi=False, | |
options=df.columns), | |
html.Label("UMAP condition 2"), | |
dcc.Dropdown(id='dpdn6', value="PAX6", multi=False, | |
options=df.columns), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-9', figure={}, className='four columns', hoverData=None ,config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-10', figure={}, className='four columns', hoverData=None, config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-11', figure={}, className='four columns',config=config_fig) | |
]), | |
html.Div([ | |
dcc.Graph(id='my-graph_db202', figure={}, clickData=None, hoverData=None, | |
className='four columns',config=config_fig | |
) | |
]), | |
]), | |
]) | |
tab4_content = html.Div([ | |
html.Label("Column chosen"), | |
dcc.Dropdown(id='dpdn2', value="leiden_res_0.95_r3", multi=False, | |
options=df.columns), | |
html.Div([ | |
html.Label("Multi gene"), | |
dcc.Dropdown(id='dpdn7', value=interesting_genes, multi=True, | |
options=df.columns), | |
]), | |
html.Div([ | |
dcc.Graph(id='scatter-plot_db20-12', figure={}, className='row',style={'width': '100vh', 'height': '90vh'}) | |
]), | |
]) | |
# Define the tabs layout | |
layout = html.Div([ | |
html.H1(f'Dataset analysis dashboard: {dataset}'), | |
dcc.Tabs(id='tabs', style= {'width': 600, | |
'font-size': '100%', | |
'height': 50}, value='tab1',children=[ | |
#dcc.Tab(label='Dataset', value='tab0', children=tab0_content), | |
#dcc.Tab(label='QC', value='tab1', children=tab1_content), | |
dcc.Tab(label='UMAP visualisation', value='tab3', children=tab3_content), | |
dcc.Tab(label='Multi dot', value='tab4', children=tab4_content), | |
dcc.Tab(label='Cell cycle', value='tab2', children=tab2_content), | |
]), | |
]) | |
def update_graph_and_pie_chart(col_chosen, s_chosen, g2m_chosen, condition1_chosen, condition2_chosen, condition3_chosen): #, range_value_1, range_value_2, range_value_3 batch_chosen, | |
batch_chosen = df[col_chosen].unique().to_list() | |
dff = df.filter( | |
(pl.col(col_chosen).cast(str).is_in(batch_chosen)) #& | |
) | |
# Select ordering of plots | |
if condition1_chosen == "integrated_cell_states": | |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())} | |
else: | |
cat_ord= {condition1_chosen: natsorted(dff[condition1_chosen].unique())} | |
# Calculate the mean expression | |
# Melt wide format DataFrame into long format | |
# Specify batch column as string type and gene columns as float type | |
list_conds = condition3_chosen | |
list_conds += [col_chosen] | |
dff_pre = dff.select(list_conds) | |
# Melt wide format DataFrame into long format | |
dff_long = dff_pre.melt(id_vars=col_chosen, variable_name="Gene", value_name="Mean expression") | |
# Calculate the mean expression levels for each gene in each region | |
expression_means = dff_long.lazy().group_by([col_chosen, "Gene"]).agg(pl.mean("Mean expression")).collect() # | |
# Calculate the percentage total expressed | |
dff_long1 = dff_pre.melt(id_vars=col_chosen, variable_name="Gene")#.group_by(pl.all()).agg(pl.len()) | |
count = 1 | |
dff_long2 = dff_long1.with_columns(pl.lit(count).alias("len")) | |
dff_long3 = dff_long2.filter(pl.col("value") > 0).group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("len")) | |
dff_long4 = dff_long2.group_by([col_chosen, "Gene"]).agg(pl.sum("len").alias("total")) | |
dff_5 = dff_long4.join(dff_long3, on=[col_chosen,"Gene"], how="outer") | |
result = dff_5.select([ | |
pl.when((pl.col('len').is_not_null()) & (pl.col('total').is_not_null())) | |
.then(pl.col('len') / pl.col('total')*100) | |
.otherwise(None).alias("%"), | |
]) | |
result = result.with_columns(pl.col("%").fill_null(0)) | |
dff_5[["percentage"]] = result[["%"]] | |
dff_5 = dff_5.select(pl.col(col_chosen,"Gene","percentage")) | |
# Final part to join the percentage expressed and mean expression levels | |
expression_means = expression_means.join(dff_5, on=[col_chosen,"Gene"], how="inner") | |
fig_scatter_db20_5 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=s_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name=None, title="S-cycle gene:",template="seaborn") | |
fig_scatter_db20_6 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=g2m_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='sample', title="G2M-cycle gene:",template="seaborn") | |
fig_scatter_db20_7 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="S_score", | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='sample', title="S score:",template="seaborn") | |
fig_scatter_db20_8 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color="G2M_score", | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='sample', title="G2M score:",template="seaborn") | |
# Sort values of custom in-between | |
dff = dff.sort(condition1_chosen) | |
fig_scatter_db20_9 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition1_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name=None,hover_data = None, template="seaborn",category_orders=cat_ord) | |
fig_scatter_db20_9.update_traces(hoverinfo='none', hovertemplate=None) | |
fig_scatter_db20_9.update_layout(hovermode=False) | |
fig_scatter_db20_10 = px.scatter(data_frame=dff, x='X_umap-0', y='X_umap-1', color=condition2_chosen, | |
labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='sample',template="seaborn") | |
fig_scatter_db20_11 = px.scatter(data_frame=dff, x=condition1_chosen, y=condition2_chosen, color=condition1_chosen, | |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name='sample',template="seaborn",category_orders=cat_ord) | |
# Reorder categories on natural sorting or on the integrated cell state order of the paper | |
if col_chosen == "integrated_cell_states": | |
fig_scatter_db20_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression", | |
size="percentage", size_max = 20, | |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen}) | |
else: | |
fig_scatter_db20_12 = px.scatter(data_frame=expression_means, x="Gene", y=col_chosen, color="Mean expression", | |
size="percentage", size_max = 20, | |
#labels={'X_umap-0': 'umap1' , 'X_umap-1': 'umap2'}, | |
hover_name=col_chosen,template="seaborn",category_orders={col_chosen: natsorted(expression_means[col_chosen].unique()),"Gene": condition3_chosen}) | |
fig_violin_db202 = px.violin(data_frame=dff, x=condition1_chosen, y=condition2_chosen, box=True, points="all", | |
color=condition1_chosen, hover_name=condition1_chosen,template="seaborn",category_orders=cat_ord) | |
return fig_scatter_db20_5, fig_scatter_db20_6, fig_scatter_db20_7, fig_scatter_db20_8, fig_scatter_db20_9, fig_scatter_db20_10, fig_scatter_db20_11, fig_scatter_db20_12, fig_violin_db202 #fig_violin_db20, fig_pie_db20, fig_scatter_db20, fig_scatter_db20_2, fig_scatter_db20_3, fig_scatter_db20_4, | |
# Set http://localhost:5000/ in web browser |