Spaces:
Running
Running
import pickle | |
import os | |
import re | |
from g2p_en import G2p | |
from bert_vits2.text import symbols | |
current_file_path = os.path.dirname(__file__) | |
CMU_DICT_PATH = os.path.join(current_file_path, 'cmudict.rep') | |
CACHE_PATH = os.path.join(current_file_path, 'cmudict_cache.pickle') | |
_g2p = G2p() | |
arpa = {'AH0', 'S', 'AH1', 'EY2', 'AE2', 'EH0', 'OW2', 'UH0', 'NG', 'B', 'G', 'AY0', 'M', 'AA0', 'F', 'AO0', 'ER2', | |
'UH1', 'IY1', 'AH2', 'DH', 'IY0', 'EY1', 'IH0', 'K', 'N', 'W', 'IY2', 'T', 'AA1', 'ER1', 'EH2', 'OY0', 'UH2', | |
'UW1', 'Z', 'AW2', 'AW1', 'V', 'UW2', 'AA2', 'ER', 'AW0', 'UW0', 'R', 'OW1', 'EH1', 'ZH', 'AE0', 'IH2', 'IH', | |
'Y', 'JH', 'P', 'AY1', 'EY0', 'OY2', 'TH', 'HH', 'D', 'ER0', 'CH', 'AO1', 'AE1', 'AO2', 'OY1', 'AY2', 'IH1', | |
'OW0', 'L', 'SH'} | |
def post_replace_ph(ph): | |
rep_map = { | |
':': ',', | |
';': ',', | |
',': ',', | |
'。': '.', | |
'!': '!', | |
'?': '?', | |
'\n': '.', | |
"·": ",", | |
'、': ",", | |
'...': '…', | |
'v': "V" | |
} | |
if ph in rep_map.keys(): | |
ph = rep_map[ph] | |
if ph in symbols: | |
return ph | |
if ph not in symbols: | |
ph = 'UNK' | |
return ph | |
def read_dict(): | |
g2p_dict = {} | |
start_line = 49 | |
with open(CMU_DICT_PATH) as f: | |
line = f.readline() | |
line_index = 1 | |
while line: | |
if line_index >= start_line: | |
line = line.strip() | |
word_split = line.split(' ') | |
word = word_split[0] | |
syllable_split = word_split[1].split(' - ') | |
g2p_dict[word] = [] | |
for syllable in syllable_split: | |
phone_split = syllable.split(' ') | |
g2p_dict[word].append(phone_split) | |
line_index = line_index + 1 | |
line = f.readline() | |
return g2p_dict | |
def cache_dict(g2p_dict, file_path): | |
with open(file_path, 'wb') as pickle_file: | |
pickle.dump(g2p_dict, pickle_file) | |
def get_dict(): | |
if os.path.exists(CACHE_PATH): | |
with open(CACHE_PATH, 'rb') as pickle_file: | |
g2p_dict = pickle.load(pickle_file) | |
else: | |
g2p_dict = read_dict() | |
cache_dict(g2p_dict, CACHE_PATH) | |
return g2p_dict | |
eng_dict = get_dict() | |
def refine_ph(phn): | |
tone = 0 | |
if re.search(r'\d$', phn): | |
tone = int(phn[-1]) + 1 | |
phn = phn[:-1] | |
return phn.lower(), tone | |
def refine_syllables(syllables): | |
tones = [] | |
phonemes = [] | |
for phn_list in syllables: | |
for i in range(len(phn_list)): | |
phn = phn_list[i] | |
phn, tone = refine_ph(phn) | |
phonemes.append(phn) | |
tones.append(tone) | |
return phonemes, tones | |
def text_normalize(text): | |
return text | |
def g2p(text): | |
phones = [] | |
tones = [] | |
words = re.split(r"([,;.\-\?\!\s+])", text) | |
for w in words: | |
if w.upper() in eng_dict: | |
phns, tns = refine_syllables(eng_dict[w.upper()]) | |
phones += phns | |
tones += tns | |
else: | |
phone_list = list(filter(lambda p: p != " ", _g2p(w))) | |
for ph in phone_list: | |
if ph in arpa: | |
ph, tn = refine_ph(ph) | |
phones.append(ph) | |
tones.append(tn) | |
else: | |
phones.append(ph) | |
tones.append(0) | |
word2ph = [1 for i in phones] | |
phones = [post_replace_ph(i) for i in phones] | |
return phones, tones, word2ph | |
if __name__ == "__main__": | |
# print(get_dict()) | |
# print(eng_word_to_phoneme("hello")) | |
print(g2p("In this paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")) | |
# all_phones = set() | |
# for k, syllables in eng_dict.items(): | |
# for group in syllables: | |
# for ph in group: | |
# all_phones.add(ph) | |
# print(all_phones) | |